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1. INTRODUCTION 

In a microarray dataset, the rows and columns indicate the 

number of entries and the dimensions to be evaluated. The 

work required to determine what is most important grows 

proportionally with the number of dimensions in a dataset. 

The hardest part of big feature space datasets (i.e., microarray 

datasets) is projecting a vast feature space into a smaller one 

while preserving as much information as feasible [1]-[5]. 

Preprocessing such massive volumes of data may be costly 

since each record in a microarray dataset may include up to 

450,000 attributes. Furthermore, data sparsity and the quantity 

of relevant data diminish as the dimensionality of a dataset 

rises exponentially. Datasets with a wide feature space and 

few records or observations tend to exhibit this more 

frequently. Because of the rapid change in available data, a 

model built using overfitted data runs the risk of producing 

significant classification mistakes. Problems might be further 

exacerbated by the presence of noise. Noisy data is 

information that either contains errors or varies significantly 

from the expected value. It is also worth noticing that the 

machine learning algorithm's performance may hampered if 

fed with inaccurate or otherwise flawed data [6]. To reduce 

the model’s complexity and improve its machine-learning 

performance, noisy input must be filtered out. The reasons to 

select suitable feature selection methods include huge dataset 

dimensions, high cost of computing, the presence of irrelevant 

data, the risk of overfitting, and manual feature extraction. 

The accessible data is preserved while a vast feature space is 

narrowed down to its most crucial characteristics using the 

feature selection method. By focusing on the features that 

matter most, we may get accurate classifications in less time 

[7]. Task-relevant data is significant in determining the 

efficiency of the data mining approach. Thus, there is a linear 

relationship established between the input and output. 

Learning across a large feature space would be difficult, if a 

data mining approach is applied to irrelevant data, such as data 

containing redundant information or noise. As data mining 

grows in popularity, more researchers are focusing on feature 

selection because of its importance [8]. Feature selection is 

the process of narrowing down a large feature space, such as 

a dataset, to a manageable subset that may be used in model 

building. By filtering out irrelevant information about the 

data, feature selection helps in the fast and efficient 

functioning of the data mining process [9]. Filters, wrappers, 

and embedding techniques are a few examples of feature-

selection methods. 

As the filtering method does not use any pre-defined pattern 

it selects the most distinguishing and relevant features of a 

product. The filter assessment methods include relief, 

information gain, and chi-square tests. The “wrapper 

approach” is a method for selecting features that consider the 

classification algorithm used to make the ultimate decision 

[10]-[14].  
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ABSTRACT 

As the dimension of the speech recognition dataset increases while performing the classification of the 
same, results in an increment of several features as well as its classification delay. Therefore, to reduce 
the delay required during the classification, this paper proposes the Selective Stochastic Model for delay-
aware Digital Classification (SSMDC) which consists of a Gold Code-based Intelligent Pseudo Stochastic 
Number Generator (GCI PSNG) followed by Message Digest 5 (MD5) model. The role of the PSNG 
model is to generate efficient sample indices for classification into different categories followed by a low-
complexity truncated MD5 model for the generation of sample-selection indices. These indices are 
sequentially given to feature memory blocks for the selection of samples, which are classified by the 
underlying classifiers. The SSMDC model performance is tested on auditory Mel-Frequency Cepstral 
Coefficients (MFCC) component features with k-Nearest Neighbors (k-NN) classifier but can be 
extended to any other application with minimal configurations, thereby making it useful for a wide variety 
of real-time scenarios. The proposed model is implemented using Verilog HDL on Xilinx Vivado Design 
Suite 2023.1, and simulation results are obtained considering the device xc7a100tcsg324-1 Nexys A7 
FPGA. Also, with SSMDC, the proposed model reduces the delay of classification by 27.35% when 
compared with other classification models. 
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The application of the wrapper method for the classification 

algorithm may generate a complete and well-tuned set of 

features to be used for several families of algorithms, such as 

Principal Component Analysis (PCA), Particle Swarm 

Optimization (PSO), etc. The model fitting in embedded 

techniques needs feature selection, with the resulting 

methodology choice depending on the embedded approach’s 

target model. Some of the examples of embedded algorithms 

include Random forests, singular value decompositions, and 

accurate Bayes approximations. Since external methods do 

not consider all possible combinations of characteristics, it has 

been shown that filter and wrapper techniques are insufficient 

as a solution [11]. Selecting many candidate feature subsets 

allows a feature selection method to cover more ground and 

learn more about the feature space. There is no connection 

between search terms and metrics used for assessment. 

Searches may be conducted in one of three ways: 

exhaustively, sequentially, or at random [15] 

. 

An in-depth search, often called an exhaustive search provides 

more accurate results. Nonetheless, when applied to a big 

feature space, W(2n) (W stands for exhaustive search) 

becomes computationally expensive (n). Since the best 

answer or subset relies on the rankings generated by previous 

methods, it cannot be found using sequential search. The 

computational cost is still lower than that of W. Also, the best 

results are not always guaranteed by random search, which 

uses a sequential search technique and picks a random part of 

the feature space, to begin with. After picking an option, the 

process begins again, creating a new random group [16]-[20]. 

Most often researchers use feature selection methods when 

there are many features but few samples to work with (or data 

points). The two classic examples of feature selection, which 

frequently involve thousands of features and tens to hundreds 

of samples, are text analysis and DNA microarray data [14]. 

The capability to limit the available features to those that are 

most relevant for the present task may improve the 

classification's effectiveness and efficiency. Restricting 

model overfitting to a confined feature space also enhances 

the generalization capacity of classifiers. To prevent it from 

becoming distracted by unrelated information, the model or 

classifier is trained using the most pertinent features of the 

data. Many of them could be useful in treating various 

artifacts. The disease profiling may improve in terms of 

classification and sickness prediction accuracy by using even 

a small gene microarray dataset based on a feature set. To 

reduce the massive amounts of information different methods 

have been developed often seen in gene microarray datasets. 

Improving illness classification and forecasting is the main 

goal. Feature selection can be used to limit the feature space 

to a more manageable subset, which will further enhance the 

responsiveness of the model. Currently, images, radiological 

reports, prescription profiles, signals, patient histories, 

pathology reports, and treatment records are all contained in 

the organized and semi-structured databases of healthcare 

institutions. This dataset has a wide feature space, 

heterogeneity, complexity, ambiguity, and noise. As a result, 

data mining offers a wide range of approaches that offer 

appropriate and correct feature selection methods and 

classification algorithms, which may help unearth previously 

buried patterns and information in such datasets. The clinical 

researchers and practitioners may benefit widely from these 

patterns and data as well as more wise decisions for early 

disease detection can be taken. 

This establishes a formal connection between the number of 

feature sets and computational complexity, and it explains 

why state-of-the-art classification and feature selection 

models like the Support Vector Machine (SVM), k-nearest 

Neighbor (k-NN), and others need N-clock cycles. When 

there are more attributes to consider, more time and resources 

are needed to train these classifiers. To address these issues, 

the researchers have reported a variety of feature reduction 

strategies [26], but their implementation is costly and time-

consuming preventing them from using moderately advanced 

Field Programmable Gate Arrays (FPGAs). Furthermore, 

feature reduction is quite energy-intensive, which restricts the 

scalability of such methods. To overcome these limitations, a 

further part of this paper proposed a powerful stochastic 

model for the delay-aware digital classification of FPGAs. 

Also, we analyze the model's efficacy in a variety of scenarios 

by comparing in terms of computing metrics such as 

latency(delay), energy(power), and area (Look Up Tables – 

LUTs) to those of existing techniques in [1,5,10,27]. The 

paper is organized as follows: Section II describes the details 

of existing works. The proposed SSMDC model which is an 

integration of PSNG [28-29] and MD5 details are covered in 

Section III. Section IV covers the results and comparison with 

the existing work. Finally, the article is summarized. 

    

2. PROPOSED MODEL 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed Intelligent Stochastic Classification Process 

 

Figure 1 proposes the design of a Gold Code-based Intelligent 

Pseudo Stochastic Number Generator (GCI PSNG). It generates 

sample-selection indices using a Message-Digest 5 (MD5) Model 

with reduced complexity. These indices are sequentially provided 
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to feature memory blocks to select samples for classification by 

the underlying classifiers. To ensure non-repetitive features, an 

in-memory cache of computed numbers is maintained, which 

helps to reduce index calculations. To maintain track of sample-

to-class mapping counts for individual classes, the proposed 

design converges when counts for any class exceed fifty percent 

of the total number of samples. To perform this task, the data is 

initially loaded into the memory, which consists of selected 

feature samples, and their individual classes. This data is 

segregated into training, testing & validation samples. The 

training samples are used to identify classes of testing and 

validation samples. For each of the testing and validation 

samples, an intelligent and stochastic set of indices is initially 

generated via gold sequences. The Gold sequence generator is a 

type of linear feedback shift register (LFSR) that uses two shift 

registers and an XOR operation to generate a sequence of pseudo-

random bits. The sequence generator output is a binary sequence 

with good statistical properties and can be used to generate 

stochastic numbers. A binary fraction expansion method is used 

to convert binary output sequence into decimal value lies in the 

range (0,255) which is employed in stochastic number generation 

and utilized in the gold sequence generator. 

Alternatively, we use the output sequence directly as a 

stochastic sequence by treating each 0 as a "heads" outcome and 

each 1 as a “tails” outcome via the following operations, 

• Initialize two seed values seed1 ,and seed2 𝑎𝑠 

                     seed1 = Nt /2                                                         (1) 

                     seed2 = Nt /4                                                        (2)                                                                                                                                     

where 𝑁𝑡 represents the total number of samples available in the 

training sets. 

• Now, define two binary polynomials P1 and P2 as 

P1 = x14 + x1 + 1                                                (3) 

P2=x28+x24+ x22+ 1                                            (4) 

In both these equations, the output will be obtained via low-

complexity shifting operations. 

• Extract the Least Significant Bits (LSBs) from both seeds 

using  

LSBi = seedi >> 7                                             (5) 

where, 𝑖 ∈ (1,2) for the two seed value sets. 

• Generate an output bit Outputi as 

Outputi = LSB1 XOR LSB2                                (6) 

Shift the registers by one bit using the generator polynomials, 

using following;   

  seed(new)i =  Pi                                         (7) 

to calculate the new value sets. 

• Update the shift registers with the new values using 

     seed(new)i=( seed(new)i+ seed(old)i ) >> 1             (8)      

   Based on these operations, the 𝑂𝑢𝑡𝑝𝑢𝑡 value is returned for 

an individual set of bits. A set of 8 bits is aggregated to form a 

stochastic byte, which is used by the Message-Digest 5 (MD5) 

[3] Model for the calculation of next & consecutive memory 

index sets. An input message is fed into the cryptographic hash 

function MD5, which outputs a fixed-size, 128-bit (16-byte) 

hash result. The 16 bytes are often non-repetitive and can be 

used as classification indices. 
 To perform this task, initially, a set of auxiliary functions are 

defined using the following  

         F(X,Y,Z) = (X & Y) | (�̅� & Z)                           (9) 

        G(X,Y,Z) = (X & Z) | (Y &�̅�)                          (10) 

        H(X,Y,Z)= X ^ Y ^ Z                                        (11) 

        I(X,Y,Z)=Y ^(X & �̅�)                                       (12) 

Using these functions, a set of rounds Roundi(A,B,C,D,X,S,T) 

are defined as 

Roundi(A,B,C,D,X,S,T) =B+LR((A+ Funi(B,C,D)+ X + T),S)   
                                                                                              (13)                                                                                                            

where, 𝐿𝑅 represents left rotation operations, while 𝑖 ∈ (1, 4), 

and 𝐹𝑢𝑛𝑖 ∈ (𝐹, 𝐺, 𝐻, 𝐼) for individual set of rounds. To setup 

the MD5 constants of 32-bit words each denoted as A, B, C, and 

D 

   A =Nt  * 2                                                 (14) 

B = Nt  * 4                                  (15)

 C = Nt  * 8                                                (16) 

D=Nt * 16                                                 (17) 

Pre-process the generated stochastic number by appending a 

single "1" bit and padding it with zeros. Now generate updated 

constant values A(New), B(New), C(New), and D(New) as 

         A(New)=Roundi(A,B,C,D,SI[j],7,Ntest)                        (18)  

       B(New)=Roundi(A,B,C,D,SI[j+1],12,Ntest)                   (19) 

        C(New)=Roundi(A,B,C,D,SI[j+2],17,Ntest)                  (20) 

         D(New)=Roundi(A,B,C,D,SI[j+3],22,Ntest)                    (21) 

where Ntest are total number of testing samples 

            j is the input bit number 

           SI is the stochastically generated number 

           i ∈ (1,4), representing 4 different rounds.  

This process is repeated for each round, and new values of 

constants A(New), B(New), C(New), and D(New) are estimated 

as 

 A(New) =A(New)+A(Old)%N(Prime)              (22)           

where, N(Prime) is a large prime number, used to limit the value 

of 𝐴 to 32 bits. 

 B(New) =B(New)+B(Old)%N(Prime)              (23)        

 C(New)=C(New)+C(Old)% N(Prime)                    (24) 

             D(New)=D(New)+D(Old) % N(Prime)                    (25) 

Hash is formed after processing each bit of stochastically 

generated input numbers by concatenating the constants 

A(New), B(New), C(New), and D(New) as 

 Hash =A(New), B(New), C(New), D(New)        (26)      

Individual bytes (or words) are extracted from this hash value 

and checked for uniqueness. This is done as per the following 

process, 

• Create an Nt bit long register, and set all its bits to ‘0’ 

• Bits are set to ‘1’, depending upon which set of training 

samples have been used for the classification operations.  

• If a bit is found to be ‘0’, then its corresponding hash-byte 

is given to the k-Nearest Neighbors (k-NN) classifier.  

• This ensures that there are a minimum number of 

comparisons to obtain the final class. 

   Each of the pseudo stochastic number generator operations, 

MD5 operations, and selective indices operations are simple to 

deploy on FPGAs as they contain only shifting & logical 

operations. Extending to this simplicity, the k-nearest Neighbors 

(k-NN) Model is used here for the classification task. 
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3. COMPARATIVE PERFORMANCE 

ANALYSIS 
In this section, the proposed SSMDC model is implemented using 

Verilog HDL, and all the simulations are performed using Xilinx 

Vivado Design Suite 2023.1. For the result analysis, a set of 1300 

different samples were recorded using audacity at 16 kHz 

sampling frequency and stored in the dataset. These speech 

keyword samples are categorized as 665 samples of Indian-Male, 

127 of Indian-Female, 127 of Taiwanese-Male, 127 of Uganda-

Male, 127 of Indonesian Female, and 127 of Indonesian Male 

respectively. Mel Frequency Cepstral Component (MFCC) 

features were extracted using MATLAB for “Forward”, 

“Reverse”, “Left”, “Right”, “Start”, and “Stop” speech keywords 

and the converted samples were classified using k-NN classifier 

to evaluate its performance [35]-[40]. Based on this, the average 

delay needed for classification was estimated and compared with 

different models by normalizing the results via. the following 

equation 

 

        P(Norm) =P(Obtained) / Maximum_Samples             (27) 

 

where, P(Norm) and P(Obtained) are the values of the 

normalized and obtained parameters, and Maximum_Samples   

represents the maximum number of samples for which the 

model is evaluated in the reference text for different input sets. 

In a linear classifier, the normalized values are calculated by 

performing the division operation of the obtained parameters 

with the maximum number of samples. Based on this strategy, 

the area needed for deploying the design on standard FPGA is 

evaluated and compared with existing models in Table 1.     

Table. 1 Comparison of Normalized Area Utilization for 

Different Models 

Classification Models 
Look Up Table 

(LUTs) 

Deep Neural Network (DNN) [1] 14964 

Convolutional Neural Network (CNN) [5] 63968 

Convolutional Neural Network (CNN) [10] 43675 

RF Signal Classification [27] 158435 

SSMDC Proposed 13.98 

 

According to the Table 1 results, the proposed model shows an 

improvement in terms of LUTs as compared to other models 

such as Deep Neural Network [1], Convolutional Neural 

Network [5,10], and RF Signal Classification [27]. This is 

mainly due to the sample-by-sample processing of speech inputs 

processed by the integration of PSNG [28-29] and MD5 

components in the proposed SSMDC model. 

The comparison of normalized area utilization in terms of LUTs 

required for the proposed SSMDC model with and without 

optimization for the k-NN classifier has been illustrated in Table 

2. 

Table. 2 Comparison of Normalized Area Utilization with 

and without Optimization 

No. of Test Samples (NTS) 
LUT required 

without SSMDC 

LUT required 

with SSMDC 

100 1351 1474 
200 1829 2500 

300 4100 3778 

400 3456 14732 
500 6754 6734 

600 8127 7907 

700 6827 8353 
800 7975 10573 

900 10603 10267 

1000 10132 9165 
1100 9358 13415 

1200 13893 13186 

1300 10610 12248 

Average LUT required per 

sample 

10.91 13.98 

 

Similarly, the power consumed while simulating the proposed 

SSMDC model, the following results are obtained as shown in 

Table 3. As it is clearly observed from the tabular results, the 

power consumption improvement for the proposed model is 

96% as compared to the least reported values of the DNN [1] 

model. Likewise, the computation results for the power 

consumption with and without optimization are demonstrated in 

Table 4. 

Table. 3 Comparison of Power Consumption for Different 

Models 

Classification Models Power (in watts) 

Deep Neural Network (DNN) [1] 0.74 
Convolutional Neural Network (CNN) [5] 2.41 

Convolutional Neural Network (CNN) [10] 2.41 

RF Signal Classification [27] 1.152 
SSMDC Proposed 0.025 

 

Table. 4 Comparison of Power Consumption with and 

without Optimization 

No. of Test Samples (NTS) 
Power Consumed 
(in watts) without 

SSMDC 

Power Consumed 
(in watts) with 

SSMDC 

100 0.316 1.564 

200 0.304 1.730 

300 11.727 15.554 

400 0.268 22.399 

500 31.470 16.273 
600 18.569 1.625 

700 8.880 20.597 

800 6.495 37.346 
900 12.147 21.034 

1000 25.860 18.068 

1100 19.022 37.853 
1200 19.112 9.150 

1300 28.588 2.078 
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Average LUT required per 

sample 

0.019 0.025 

 

Additionally, the suggested SSMDC model's delay computation 

results are computed, and Table 5 displays a comparison with 

previous studies. According to the findings, the suggested 

model classifies speech keyword signals more quickly than 

other models that are currently in use [1,5,10,27]. 

Table. 5 Comparison of Normalized Delay for Different 

Models 

Classification Models 
Delay                

(In microseconds) 

Deep Neural Network (DNN) [1] 15.3 

Convolutional Neural Network (CNN) [5] 70,000 

Convolutional Neural Network (CNN) [10] 71,000 

RF Signal Classification [27] 24 

SSMDC Proposed 0.03648 

 

The proposed SSMDC model can be deployed for multiple real-

time scenarios and can be used to update the performance of 

existing models [1,5,10,27] that perform comparisons of full-

length datasets and samples for the purpose of classifications. 

This analysis is illustrated in Table 6, where the delay is 

compared with and without optimization for a standard k-NN 

classifier. 

Table. 6 Comparison of Delay with and without 

Optimization 

No. of Test Samples (NTS) 
Delay                 

(in microseconds) 

without SSMDC 

Delay                 
(in microseconds) 

with SSMDC 

100 0.99 0.82 

200 7.56 3.72 

300 10.36 9.82 

400 16.78 13.54 

500 25.45 16.52 
600 29.67 21.25 

700 40.50 27.97 

800 43.40 31.30 
900 50.50 36.97 

1000 60.40 45.43 

1100 75.90 53.77 

1200 85.40 58.63 

1300 89.50 63.79 

Average Delay required 

per sample 

0.050936 0.03648 

 

The analysis of Table 6 results indicates that the proposed 

SSMDC model shows a classification delay improvement of 

27.35% as compared to without SSMDC (without optimization) 

model. Further, this optimized classification (SSMDC model) 

delay results can assist in deploying these models for different 

real-time high-speed use cases. 

Figure 2 represents the comparative analysis of various 

performance parameters such as Area Utilization (in 2(A), 

Power Consumption (in 2(B)), and Classification delay (in 

2(C)) of the proposed SSMDC model with other models 

[1,5,10,27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (A) Comparison of Area Utilization for various models. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (B) Comparison of Power consumption for various 

models. 
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Fig. 2 (C) Comparison of Classification Delay for various models.

 

Fig. 3 Comparative Analysis of Classification Delay with and without optimization of SSMDC Model. 

 

Likewise, the comparative estimation of classification delay 

with and without the SSMDC model for the speech keyword 

dataset is represented in Figure 3. The figure indicates that the 

classification delay with the SSMDC model provides superior 

results in all the test samples in contrast to those without 

SSMDC model. Hence, the proposed SSMDC model 

outperforms in terms of classification delay, power 

consumption, and LUT as compared to other state-of-the-art 

models [1,5,10,27]. Therefore, the proposed optimized SSMDC 

model which provides a minimum classification delay can be a  

 

suitable classifier for dense speech processing FPGA-

based datasets. 

 

4. CONCLUSION 
This work presents the unique SSMDC model, which is ideal 

for delay-aware classification of the limited datasets related to 
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recorded speech processing. It is generated by integrating the 

PSNG and MD5 models. In order to help create useful sample 

indices that fall into a number of categories, the paper describes 

the creation of an Intelligent Pseudo Stochastic Number 

Generator (GCI PSNG) based on the Gold Code. The low-

complexity truncated Message Digest 5 (MD5) model aids in 

the development of sample-selection indices in the GCI PSNG 

model. The suggested SSMDC model lowers the classification 

time by roughly 27.35% when compared to alternative feature 

classification models. Our suggested model performed better in 

delay-aware deployments in a variety of applications, including 

wireless communication, industrial automation, speech, and 

picture recognition, and so forth, then other current models, 

such as DNN, Convolutional Neural Networks, and RF 

Classifiers. In conclusion, the suggested approach is a 

noteworthy advancement in the field of FPGA-based digital 

categorization. It provides an effective and innovative way to 

boost the functionality of FPGA-based systems, make digital 

classification quicker and more accurate, and make it easier to 

design new applications across a range of industries and their 

deployment use cases. 
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