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1. INTRODUCTION 

A common and often deadly condition, skin cancer is a broad 

group of malignancies that originate from several types of skin 

cells. Among these, nine distinct types stand out, each with its 

unique characteristics and clinical implications. Actinic 

keratosis, basal cell carcinoma, nevus, pigmented benign 

keratosis, seborrheic keratosis, dermatofibroma, melanoma, 

and vascular lesions are a few of them [1]. 
 

Melanoma, squamous cell carcinoma, and basal cell carcinoma 

are the more serious forms of skin cancer since they have the 

ability to spread and result in severe morbidity and mortality if 

treatment is not received [2]. These cancers arise from 

abnormal growth or mutations in skin cells, often triggered by 

UV radiation exposure or genetic predisposition [3]. 

 

On the other hand, dermatofibroma, nevus, pigmented benign 

keratosis, seborrheic keratosis, actinic keratosis and vascular 

lesions are generally classified as non-cancerous or benign 

skin conditions. While they may present as abnormal growths 

or lesions on the skin, they typically do not pose the same level  

of risk as cancerous skin lesions. However, it’s essential to 

monitor these lesions for any changes or signs of malignancy, 

as certain benign conditions may mimic or evolve into 

malignant tumors over time. 

 

Understanding the distinctions between cancerous and 

noncancerous skin lesions is critical for accurate diagnosis, 

treatment planning, and patient management. Dermatologists  
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rely on a combination of clinical examination, dermoscopy, 

histopathological analysis, and molecular testing to 

differentiate between benign and malignant skin lesions 

accurately [4],[5]. 

 

It is critical to create algorithms that can reliably identify these 

nine types of skin lesions into groups corresponding to cancer 

and non-cancerous conditions in the context of automated skin 

cancer detection [6]. In order to help dermatologists make 

timely and well-informed therapeutic decisions, researchers 

hope to build models that can recognize minor traits and 

patterns indicative of malignancy by utilizing machine 

learning and deep learning approaches. 
Based on this understanding, this paper recommends an 

extensive framework for examining skin cancer images, 

integrating deep learning methodologies for preprocessing, 

segmentation, and classification tasks. We perform our 

methodology on skin lesion images as shown in Fig 1. The 

proposed framework considers the extensive spectrum of skin 

cancer types and their potential clinical outcomes in order to 

enhance the accuracy and efficacy of automated skin cancer 

detection. This will eventually improve patient outcomes and 

lessen the disease's global effect. Our methodology 

incorporates robust preprocessing steps to enhance the clarity 

and fidelity of images, precise segmentation algorithms to 

isolate lesions accurately, and sophisticated classification 

models trained on extensive datasets to achieve high diagnostic 

accuracy across various skin cancer types. Through rigorous 

evaluation and validation, we demonstrate the effectiveness of 

our framework in facilitating early and accurate diagnosis, 

thereby contributing to better patient care and public health 

 
ABSTRACT 

Skin cancer poses a substantial health threat worldwide, underscoring the importance of timely identification and 

precise categorization for effective treatment. This paper presents a comprehensive framework for skin cancer image 

analysis, encompassing preprocessing, segmentation, and classification of nine types of skin cancer using a custom 

Convolutional Neural Network (CNN) model. The preprocessing stage addresses missing or corrupted regions in 

images using inpainting algorithms, enhancing image quality and completeness. After that, a dataset obtained from 

the International Skin Imaging Collaboration (ISIC) on Kaggle is segmented using the watershed technique. 

Accurately identifying tumor locations throughout the segmentation process makes feature extraction for 

classification easier later on. Deep learning techniques play a pivotal role in this framework, enabling automatic 

feature extraction and learning from raw image data. The use of CNNs enables the development of a personalized 

model specifically designed to accurately identify nine types of skin cancer. The evaluation process of our skin cancer 

classification system includes the assessment of various metrics, such as predicting cancer types and confidence 

scores. Through this evaluation, the model assigns prediction values to all nine types of skin cancer, ultimately 

identifying the specific type based on the highest prediction value. This comprehensive assessment highlights the 

system’s potential as a valuable aid for dermatologists in accurately diagnosing and effectively treating skin cancer 

cases. 
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initiatives. 

 

 

Fig. 1 Sample images from the dataset 

2. METHODOLOGY 

The machine learning discipline of deep learning, which is 

typified by multilayered neural networks, is the foundation for 

the classification technique for skin diseases. Large-scale 

datasets of dermatoscopic image analysis are analyzed by deep 

learning algorithms, which then autonomously learn 

discriminative characteristics linked to different forms of skin 

lesion. By training on diverse examples, these models discern 

subtle differences between lesion types, enabling accurate 

classification. Our investigation utilized inpainting algorithms 

to enhance image quality by addressing missing or damaged 

regions, followed by segmentation using the watershed 

algorithm to isolate lesion containing regions precisely. 

Subsequently, a custom convolutional neural network (CNN) 

model was developed and trained on pre-processed images, 

with performance evaluated on separate validation and test 

sets. The trained model produces predictions for new images, 

offering class labels, confidence scores, and accuracy metrics 

for precise classification. This methodology incorporates 

cutting-edge deep learning techniques to construct a 

sophisticated skin lesion classification system capable of 

precise diagnosis and categorization. Fig 2 illustrates the block 

diagram of the proposed skin lesion image analysis. 

2.1 DATA ACQUISITION  

The data acquisition phase involves gathering a 

comprehensive dataset comprising dermatoscopic images of 

skin lesions. As seen in Fig. 3, these images are accompanied 

by class designations that correlate to the type of lesion 

present. The dataset is obtained from International Skin 

Imaging Collaboration (ISIC) skin cancer images which are 

meticulously curated to ensure diversity and 

representativeness, encompassing various lesion types, sizes, 

and orientations [7]. High-resolution images obtained using 
dermatoscopes or similar imaging equipment are carefully 

chosen to enable precise analysis and classification. 

 

 

Fig. 2 Flowchart for the proposed image analysis system  

 

 

Fig. 3 Sample images per class  
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2.2 DATA PREPROCESSING  

During the data preprocessing phase, inpainting algorithms 

significantly contribute to enhancing the quality of 

dermatoscopic images by rectifying any missing or damaged 

regions [8]. In order to make the images appropriate for further 

study, this crucial process entails filling in areas that might 

include artifacts or flaws. Inpainting techniques intelligently 

interpolate missing information based on surrounding pixel 

values, effectively restoring the integrity of the images without 

altering their overall appearance. By effectively addressing 

any irregularities, the inpainting process makes a substantial 

contribution to enhancing the accuracy of segmenting and 

classifying skin lesions in the subsequent stages of the analysis 

pipeline. The process unfolds in several sequential steps as 

shown in Fig 4. First, the original color dermatoscopic images 

are converted to grayscale from RGB. Grayscale images 

simplify subsequent processing by representing pixel 

intensities in a single channel, preserving essential structural 

information while reducing complexity. Subsequently, the 

grayscale images undergo a Black Hat transformation, which 

highlights regions darker than their surroundings, thereby 

enhancing subtle features and abnormalities present in the skin 

lesions [9]. Following this, a        threshold mask is applied to the 

transformed images to segment the image into binary regions 

based on a predefined threshold value. This segmentation 

technique separates the foreground (lesions) from the 

background, making it easier to identify and isolate regions of 

interest. Lastly, inpainting algorithms are employed to fill in 

missing or damaged areas in the images, intelligently 

interpolating missing information based on surrounding pixel 

values. By restoring the integrity of the images, inpainting 

enhances the accuracy of subsequent segmentation and 

classification tasks [10],[11]. 

 

 

Fig. 4 Inpaint algorithm-based pre-processed image analysis  

2.3 DATA SEGMENTATION 

The data segmentation phase incorporates the Watershed 

algorithm into a comprehensive procedure for precisely 

outlining areas of interest within dermatoscopic images [12]. 

This algorithm utilizes intensity gradients to efficiently detect 

boundaries between various regions, thus distinguishing skin 

lesions from surrounding tissue, as depicted in Fig 5. 

 

The procedure initiates with gradient computation, during 

which the algorithm calculates the gradient magnitude of the 

dermatoscopic image, identifying edges and changes in 

intensity through methods such as Sobel or Scharr filters [13]. 

Subsequently, initial markers are strategically positioned on 

the image to denote areas of interest such as suspected lesions. 

These markers guide the algorithm’s segmentation journey and 

can be manually specified or automatically generated based on 

criteria like local maxima in the gradient magnitude [14]. 

 

Subsequently, the Flood-Filling step commences from the 

markers, with the Watershed algorithm simulating a flooding 

process where water fills the basins of the gradient landscape. 

As the water rises, watershed lines emerge along the 

boundaries where different regions intersect, effectively 

segmenting the image. By using segmentation, the 

dermatoscopic picture is divided into separate sections, each of 

which represents a different item or area of interest. Finally, 

post- processing steps refine the results, eliminating small or 

extraneous regions and merging adjacent areas with similar 

attributes [15]. 

Through meticulous   segmentation   of   the   images,   the 

Watershed algorithm significantly enhances the accuracy of 

subsequent analysis and classification tasks [16]. This pivotal 

step is essential for isolating regions containing lesions and 

extracting relevant features for classification. Ultimately, the 

Watershed algorithm is instrumental in enhancing the 

robustness and efficacy of the skin lesion classification system 

by enabling accurate segmentation of dermatoscopic images. 

 

 

Fig. 5 Region-based segmentation of the lesion 

 
 

 

Fig. 6 Number of images per class from the dataset  

 

 



884  

2.4 DATA AUGMENTATION  

Data augmentation involves various techniques aimed at 

increasing the diversity and size of the dataset. Common 

methods include rotation, flipping, scaling, and translation, 

which generate new training samples from existing images. By 

introducing variability into the dataset, data augmentation 

enhances the robustness of the classification model. This 

variability enables the model to learn from a broader range of 

image variations, improving its generalization performance on 

unseen data [17],[18]. Data augmentation often improves deep 

learning models' ability to diagnose skin lesions effectively by 

expanding the dataset and strengthening the model's resistance 

to various picture circumstances. 

 

 

Fig. 7 Augmented image distribution per class  

2.5 TRAIN-TEST-VALIDATION SPLIT  

To facilitate efficient model training, hyperparameter tuning, 

and evaluation, the dataset was split into training, validation, 

and test sets. The training set facilitated learning intricate 

patterns crucial for accurate predictions, while the validation 

set aided in preventing overfitting and ensuring robust 

generalization [19]. The test set served as the ultimate 

benchmark for evaluating the model’s performance on unseen 

data. This all-encompassing strategy ensured our classification 

model's resilience and dependability. The dataset was divided 

into around 64 percent training, 16 percent validation, and 20 

percent testing portions, in that order. 
 

The model's classification accuracy throughout consecutive 

epochs on the training and validation sets is displayed on the 

accuracy curve in Fig 8. It aids in determining how effectively 

the model generalizes to new data and learns from the training 

set. Ideally, both training and validation accuracies should 

increase steadily during training, indicating that the model is 

learning effectively without overfitting. 

 

The model's error over epochs on the training and validation 

sets is shown by the loss curve in Fig 8. The loss function 

calculates the deviation between the actual labels and the 

model's predictions. A decreasing loss indicates that the model 

is improving its predictions over time. However, if the training 

loss continues to decrease while the validation loss starts to 

increase, it suggests overfitting, indicating that the model is 

becoming too specialized for the training data. 

 

 

Fig. 8 Training and testing accuracy/loss curve   

2.6 IMPLEMENTATION OF CNN  

The implementation of the CNN model for skin lesion 

classification utilized a custom CNN architecture, integrating 

segmented image datasets to enhance performance. 

Convolutional, pooling, and fully linked layers were used in 

this architecture to effectively extract features from segmented 

input pictures. Overfitting was addressed using dropout layers, 

while ReLU activation functions were employed to introduce 

non-linearity. Utilizing TensorFlow’s Keras API, the model 

incorporated a preprocessing layer for input image rescaling, 

followed by convolutional and max-pooling layers for feature 

extraction [20]-[23]. The model underwent training on 

segmented image data, with performance evaluation 

conducted on the validation set, employing optimization 

through the Adam optimizer and utilizing the Sparse 

Categorical Cross entropy loss function. Rigorous scrutiny of 

validation and test datasets ensured precise classification of 

skin lesions. 

2.7 BUILDING UP CNN AND TRAINING PROCESS  

As illustrated in Fig. 9, our suggested approach uses the 

TensorFlow Keras API to create a customized convolutional 

neural network (CNN) model for image classification tasks. 

Here’s a breakdown of the implementation 
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Fig. 9 Layers of proposed CNN  

 

The model is built using the Sequential API, which permits 

the orderly stacking of layers [24],[25]. 

 

The Rescaling layer is used to normalize pixel values of input 

images to the range [0, 1]. This normalization helps in 

stabilizing and accelerating the training process. 

 

The model includes multiple convolutional layers (Conv2D) 

with progressively increasing numbers of filters (32, 64, 128, 

256, 512) and kernel sizes of 3x3 pixels. Through 

convolutions, these layers are responsible for extracting 

information from the input images. 

 

A MaxPooling2D layer is inserted after each convolutional 

layer to carry out spatial downsampling. This aids in lowering 

the feature maps' spatial dimensions while keeping the most 

crucial data. 

 

After the convolutional and pooling layers, a flatten layer is 

added to prepare the data for input into the fully connected 

layers. The 2D feature maps are flattened into a 1D vector as 

a result.  

Two dense layers with 1024 and "no-classes" units (number of 

output classes) added, respectively, are dense (completely 

connected) layers. For these deep layers, non-linearity is added 

to the model using the ReLU activation function. 

 

A softmax activation function is used in the last dense layer to 

provide a probability distribution across the classes. In light of 

the input image, it forecasts the likelihood of each class. 

 

The model is constructed utilizing the Adam optimizer with a 

learning rate set to 0.001. The selected loss function, Sparse 

Categorical Cross Entropy, demonstrates effectiveness in 

multi-class classification tasks where the labels are integers. 

Additionally, accuracy is employed as a metric to evaluate the 

model's performance [26], [27]. 

 

Finally, the summary () approach provides a brief overview of 

the model architecture, including what is included in and how 

large of each layer as well as the total number of parameters, 

as shown in Fig. 10. 
 

 

Fig. 10 The proposed CNN's layers 

2.8 PREDICTION AND INTERPRETATION  

The trained model identifies a specific class label from a 

predefined list, such as "vascular lesion," "pigmented benign 

keratosis," "seborrheic keratosis," "basal cell carcinoma," 

"dermatofibroma," "melanoma," "nevus," and "pigmented 

benign keratosis," after analyzing new images. Alongside 

these predictions, the model provides confidence scores and 

accuracy, indicating the certainty of its classifications. To 

properly distinguish between malignant and non-cancerous 

lesions, these predictions and confidence scores are essential. 

The model’s accuracy metric provides insight into the 

reliability of its classifications [28]. 

2.9 EVALUATION METRICS  

The confusion matrix is a vital tool for assessing the 

effectiveness of the classification model in the creation of a 

skin lesion classification system. As seen in Fig. 11, a 

confusion matrix is a table that summarizes the actual and 

expected classifications for a given dataset, allowing for the 

display of a classification algorithm's performance [29],[30]. 
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The confusion matrix of a binary classification issue typically 

has four terms: 

True Positives (TP): Cases that occur when the model 

predicts the positive category. 

True Negatives (TN): Cases that occur when the model 

correctly predicts the negative category. 

False Positives (FP): Cases that occur when the model 

predicts the positive category inaccurately.  

False Negatives (FN): Cases that occur when the model 

predicts the negative category inaccurately. 

 

Numerous performance indicators, such as accuracy, 

precision, recall (sensitivity), and specificity, can be obtained 

from the confusion matrix. These metrics shed light on how 

well the categorization model distinguishes between positive 

and negative examples. 

 

 

Fig. 11 Confusion matrix 

 

Accuracy: The total accuracy of the classification model, 

ascertained as 

 

TP + TN  

TP + TN + FP +FN  

 

Precision: It is the ratio of all optimistic projections that 

really turn out to be positive predictions. 

 

TP 

   TP+FP  

Recall (Sensitivity): Recall (sensitivity) is the ratio of 

genuine positive predictions to all actual positive occurrences 

and is calculated as  
 

TP 

TP+FN  

 

F1 Score: The F1 score is determined by  

 
 

Our classification model report, which contains the assessment 

metrics we previously mentioned, is shown in Fig. 12.  

 
 

Fig. 12 Classification report  

3. RESULTS 

We have achieved impressive results for skin lesion 

identification using our proprietary convolutional neural 

network (CNN) model, as Fig. 13 illustrates. An extensive 

evaluation has been conducted on the model's capacity to 

identify the class, accuracy, and greatest prediction probability 

for a particular skin lesion picture. 

 

 
Fig. 13 Prediction result 

 

Firstly, the CNN model exhibits robustness in accurately 

identifying the class of skin lesions. Extensive training on 

diverse datasets containing melanoma, basal cell carcinoma, 

and squamous cell carcinoma has enabled the model to 

differentiate between these classes with remarkable precision. 

 

Second, with an accuracy rate of 92.5%, our model's accuracy 

is noteworthy. When tested against ground truth labels from 

validation or test datasets, the model's high accuracy 

demonstrates its consistency in making accurate predictions, 

demonstrating its dependability in practical settings. 

 

Moreover, the highest prediction probability assigned by our 
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CNN model offers valuable insights into the confidence level 

of each prediction. For instance, in Fig 13, the highest 

prediction confidence of 0.85 corresponds to the classification 

of basal cell carcinoma as cancerous (malignant). This metric 

serves as a crucial indicator for evaluating the certainty of the 

model in its classifications. 

 

Our custom CNN model excels in precisely classifying skin 

lesions, attaining an accuracy rate of 92.5%. Its efficacy and 

dependability in skin categorization are further demonstrated 

by the confidence-indicating maximum prediction 

probabilities it offers. These findings demonstrate the model's 

capacity for cancer detection in clinical settings, potentially 

assisting dermatologists in more effectively diagnosing and 

treating skin lesions. 

 

The Table. 1 provides a comparative analysis between two 

studies that focus on the classification of skin cancer and 

lesions. It highlights differences and similarities in various 

aspects such as the title, methodology, dataset used, key 

findings, and contributions of each study. 

 

Table. 1 Comparing Research on the Classification of Skin 

Lesions 

 
Aspect Prior Study Current Study 

Title An Interpretable Skin 

Cancer classification 

using Optimized 

Convolutional Neural 

Network for a Smart 

Health Care system. 

Development of skin lesion 

classification system based 

on Watershed algorithm and 

custom CNN.  

Methodology Deep Learning - Based 

approach utilizing CNNs 

and optimization 

algorithms. Focus on 

preprocessing, 

segmentation, 

and classification. 

Skin lesion classification 

system based on watershed 

algorithm and custom CNN. 

Integrates preprocessing, 

segmentation, 

and classification. 

Dataset Used  ISIC 2017, ISIC 2018, 
HAM10000, and more 

sources for model testing 

and training. 

 

The dataset was obtained via 
the Kaggle website through 

the International Skin 

Imaging Collaboration 

(ISIC). includes nine 

different types of illnesses 

for the Train and Test 
directories. 

Key Findings High accuracies ranging 

from 91.8% to 95.1% for 

skin cancer 

classification, with an 

emphasis on Explainable 

AI (XAI) techniques for 

interpretability. The 

reported accuracy is 

81.24%, 

Accuracy rate of 92.5% for 

skin lesion classification 

using custom CNN model. 

Insights into prediction 

confidence levels provided. 

Contributions Contribution to skin 

cancer classification 

through deep learning 

and optimization 

algorithms. Emphasis on 

XAI techniques for 

interpretability. 

Contribution to skin lesion 

classification through novel 

integration of watershed 

algorithm with custom 

CNN. For automated 

diagnosis, concentrate on 

precise segmentation and 

classification. 

4. CONCLUSION 

Our integrated framework for skin cancer image analysis, 

comprising preprocessing, segmentation, and classification 

techniques, has shown promising outcomes in detecting and 

classifying nine types of skin cancer. Through the utilization 

of inpainting algorithms, we effectively managed missing or 

corrupted regions in images, while the watershed algorithm 

facilitated accurate isolation of tumor regions. Making use of 

a customized Convolutional Neural Network (CNN) model 

that was educated on a range of datasets. These datasets, 

accessible via the Kaggle website, were generated by the 

International Skin Imaging Collaboration (ISIC). We achieved 

remarkable performance in terms of performance indicators 

like accuracy and prediction confidence probabilities. The 

proficiency of our CNN model in distinguishing between 

various skin lesion types highlights its reliability in real-world 

scenarios, demonstrating its potential for clinical application in 

aiding dermatologists. Overall, our framework marks a 

significant advancement in skin cancer detection and 

classification, offering an automated and reliable approach for 

early detection and precise classification. These promising 

results pave the way for further research and potential 

deployment of our model in clinical practice, contributing to 

improved patient outcomes and healthcare delivery in 

combating skin cancer. 
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