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1. INTRODUCTION 

Fast chargers charge faster, charge safer, monitor your 

electricity consumption, optimize charging time, and 

identify charging stations quickly. In addition to laptops, 

shavers, and cameras, batteries are used in various 

applications such as electrical vehicles, the electrical 

grid, and DC microgrids. Some applications require 

bidirectional movement to shift power between two DC 

buses; therefore, a bidirectional converter is appropriate. 

These items require stable power, so different methods 

are employed to control the discharging and charging of 

the battery. To accomplish this, various studies 

recommend using bidirectional DC-DC and DC-AC 

converters. Bidirectional converters allow electricity to 

flow in two directions: forward and reverse, with the load 

feeding the input and the input feeding the load [1]. 

Traditional bidirectional converters have low efficiency 

and large losses, but bidirectional DC/DC converters 

(digital control) have high performance, soft switching, 

and high-power densities [2]. Dual active bridge charges  

EV, while there are difficulties with the dual active 

bridge during charging and discharging, such as 

switching losses while charging and discharging [3], 

high circulating current [4], low efficiency, losses when 

changing the load [5], and a small range of ZVS [6]. The 

disadvantage of the DAB is that there is not a large 

difference in voltage between 

the first and second sides of the converter (transformer), 

so the circulating current will raise the current stress and 

give us considerable losses. Various approaches for 

controlling the duty ratio and output voltage are proposed 

and simulated (SPS, EPS, DPS, and TPS). The output 

current and voltage will change as the phase delay 

between the primary and secondary voltages of the 

transformer changes. Dual active bridge has two bridges, 

each with four switches, with a high frequency 

transformer and inductor, and the most important thing is 

the outer phase shift between the primary and secondary 

bridges [7].  

When SPS is employed, the first bridge requires two 

pulses, while the second bridge requires two pulses [8]. 

When EPS is used, the first bridge requires four pulses 

and two pulses for the second bridge [9]. For DPS and 

TPS, four pulses for the first bridge and four pulses for 

the second bridge are required [10]. 

Zero voltage switching (ZVS) is a technique used in 

DAB converters to minimize switching losses and 

improve the efficiency of the converter [11]. In a DAB 

converter, two active switches are used to regulate the 

flow of current through the primary winding of a 

transformer. By carefully controlling the switching times 

of these active switches, it is possible to achieve ZVS, 

where the voltage across the switches is nearly zero when 

they are turned on or off [12]. 

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 
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This helps to minimize the power losses associated with 

the switching process and results in a more efficient 

converter. Additionally, ZVS can also reduce the stresses 

on the active switches and improve the reliability of the 

converter [13]. 

This paper compares the control system methods of dual 

active bridge, showing which one is the best method and 

zero voltage switching achieved in case of SPS. 

The paper is laid out in fallows. The first section's 

introduction. Section 2 describes a dual active bridge, 

control approach and power flow in a dual active bridge. 

Section 3 explains the zero-voltage switching in the 

converter. Section 4's simulation section and Section 5's 

conclusion. 

2. Dual Active Bridge 

 

The dual active bridge is used in a variety of appliances, 

including electric vehicles (EV), uninterruptible power 

supplies (UPS), and microgrid systems Using this 

charger provides a quick dynamic response and high 

effectiveness [14]. 

  

Fig 1. A Dual Active Bridge 

A DAB is a sort of power converter that is used to shift 

power from one source to another. It is a bi-directional 

converter, meaning it can accept and deliver power in 

either way [15]. As a result, the DAB is an important 

component in many renewable energy systems, 

comprising wind turbines and solar panels, where it can 

be utilised to transfer power from the renewable energy 

source to the grid or to a storage system [16]. 

Dual active bridge:  two bridges linked with a 

transformer in the forward direction, where the primary 

bridge flips DC to AC and the secondary bridge flips AC 

to DC [17]. The primary bridge operates at 50% duty 

cycle, producing Vab (The voltage of the first bridge), 

and the second bridge operates at 50% duty cycle with 

Vdc input. where the DAB can be controlled in various 

methods such as (TPS, EPS, SPS, and DPS) [18]. Figure 

1 illustrates a DAB. 

2.1 Single Phase Shift (SPS) 

SPS is the most employed control approach in DAB, as 

illustrated in Fig. 2. S1–S4 and S11–S44 are fifty-percent 

duty ratio square-wave gate impulses. Where Vdc and 

Vab are the output voltages of the first and second bridge, 

respectively [19]. In SPS, the cross-switches in each 

bridge are shifted together to create impulses with a fifty-

percent duty ratio. The voltage across the leaking 

inductor changes when the phase delay between Vab and 

Vdc changes. So, the power flow value can then be 

inductor changes when the phase delay between Vab and 

Vdc changes. So, the power flow value can then be 

regulated [20]. SPS has received a lot of attention since 

it has many features such as low inertia, rapid dynamic, 

and simple soft switching implementation. As a result, 

energy loss will rise while efficiency will fall [21]. 

2.2 Extended Phase Shift (EPS) 

EPS is an upgraded technique of SPS in which cross-

switches in one bridge are shifted in turn while cross-

switches in another bridge are shifted with an internal 

phase delay [22]. As a result, the output of the bridge's 

internal phase shift becomes 3 levels, while the other is 

2 levels with a fifty percent duty ratio. The energy that 

flows back during the mean duration of zero voltage in 

3-levels is zero; hence, the circuiting power will decrease 

[23]. When EPS is compared to SPS, in addition to the 

exterior phase shift in EPS is the phase delay between 

Vab and Vdc, and the internal phase delay is the phase 

shift in one bridge between pulses. Whereas external 

phase shift is employed to adjust the direction and 

amplitude of energy flow, internal phase delay is 

employed to minimise circulating power and extend the 

ZVS region [24]. 
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Table 1 comparing between control methods. 2.3 Dual Phase Shift (DPS) 

 

Control 

method 

Regulation 

Degree 

The first bridge's  

output level (AC) 

The 

second 

bridge's  

output 

level 

(AC) 

       Remarks 

SPS 1.φ 2 levels 2 levels  Using the SPS with the PI controller improves DAB 

reliability [30]. 

 According to SPS, the switch stress is at its highest in 

DAB [31]. 

 Under SPS management, full load is possible in region 

ZVS [32].  

 Quick dynamic, low inertia, and ease of implementing 

soft switching control are advantages of SPS control 

[33]. 

EPS 1.φ 

2.D 

3 levels 2 levels  In [34], EPS is used to regulate DAB, with the ZVS 

dividing into two portions. 

 EPS can be utilised for heavy loads [35]. 

 The energy transfer is regulated by φ and D under EPS 

[36]. 

 In DAB, the EPS technique is employed to lower the 

peak current throughout the entire power range [37]. 

DPS 1.φ 

2.D 

3 levels 3 levels  Relative to the SPS, the DPS can provide a larger power 

transmission region [38]. 

 DPS has smaller loss as compared to EPS [39]. 

 By employing DPS, the reverse energy flow is reduced 

[40]. 

 DPS is a simple, implementable model [41]. 

TPS 1.φ 

2.D1 

3.D2 

3 levels 3 levels  TPS is employed to enhance efficiency, decrease 

reactive power, and decrease current pressure [42]. 

 Due to the extra degree of freedom in regulating the 

transformer current, the DAB TPS offers smooth 

switching across the whole power flow range [43]. 

 TPS is used in a reactive power reduction method for 

high power DAB converters [44]. 

 TPS has three control degrees φ, D1and D2 [45]. 
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In DPS, there is an external phase delay between the first 

and second bridge and an internal phase delay in every 

bridge. So, the output AC of both bridges is 3-levels [25]. 

In comparison to SPS, DPS can lower fault currents, 

improve efficiency, widen the ZVS region, and decrease 

output capacitance. In comparison to DBS, EPS is easier 

to implement and provides better rendering [26]. 

2.4 Triple Phase Shift (TPS) 

Each bridge has an internal phase shift, and these two 

internal phase shifts are different on each other [27]. The 

TPS control method was introduced after SPS, EPS [28]. 

According to Table 1, SPS requires only 1 control level, 

DPS and EPS require 2 control levels, and TPS requires 

3 control levels. As a result, TPS is the most challenging 

to implement. In terms of development difficulties and 

efficiency, DPS control may be the relative best solution 

for large-scale practical implementation [29]. Table 1 

compares control approaches, while figures 2, 3, 4, and 5 

depict SPS, EPS, DPS, and TPS separately. 

2.5 Power flow regulation in a dual active bridge 

The analysis and performance of a DAB have been 

explored in, where figure.6 demonstrates that the 

amplitude and direction of energy flow can be changed 

by adjusting the phase delay between the first and second 

bridge's AC output voltages, Vab and Vdc. Transmission 

energy concepts of trinational AC power systems and 

DAB can be driven as follows: 

𝑃𝑠𝑖𝑛𝑒 =
𝑉𝑟𝑚𝑠1𝑉𝑟𝑚𝑠2

2𝜋𝑓𝑠𝐿
∗ 𝑠𝑖𝑛𝜑 

𝑃𝑠𝑞𝑢𝑎𝑟𝑒 =
nV1V2

2𝜋2𝑓𝑠𝐿
 (𝜋 − 𝜑) ∗ 𝜑 

where Vrms1 and Vrms2 are the RMS values of a 

sinusoidal wave and φ is the phase delay between the 

output of two bridges. The energy output enhances due 

to high-frequency power transmission. Figure 6 depicts 

the basic circuit of a DAB. 

 
Fig. 2. Single Phase Shift 

 
Fig. 3. Extended Phase Shift 

 

 

 
Fig. 4. Dual Phase Shift 

 
Fig. 5. Triple Phase Shift 

 

 

 

Fig. 6 Basic circuit of dual active bridge. 
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3. Zero voltage switching  

 

Under normal conditions, one of the features of the DAB 

is soft switching of all devices. However, the ZVS may 

be lost if the power delivered by DAB is reduced, 

especially on the second bridge. ZVS loss not only 

reduces efficiency but also increases device noise. The 

value of the current via the leakage inductor at two 

crucial points is extremely relevant. These two points 

represent the current through Lk when the first and 

second bridges are exchanged. These two current values 

are represented in Figure 7 (a) and (b). This ensures that 

current can flow through the 

 diode of the transistors to offer soft switching.  

Figure 7 shows the ideal phase shift regulation 

operational waveform. 

Describing the relationship between DAB's output 

and input voltage as follows: 

𝑀 =
𝑣𝑜

𝑣𝑖 𝑛
                                                 (1) 

I1 and I2 can be expressed as follows [50]: 

𝐼1 =
𝑇𝑣𝑖

2𝐿𝑘
(2𝑀𝑑 + 1 − 𝑀)                      (2) 

𝐼2 =
𝑇𝑣𝑖

2𝐿𝑘
(2𝑑 − 1 + 𝑀)                         (3) 

 When M= 1, I1 = I2, and greater than 0 for the 

positive phase shift value. 

𝐼1 =
𝑇

𝐿𝑘
∗ 𝑣𝑖𝑑                                         (4)      

𝐼2 =
𝑇

𝐿𝑘
∗ 𝑣𝑖𝑑                                         (5) 

T is one-half of the switching period; d is the phase 

difference between v1 and v2; Lk leakage inductor. 

 When M < 1, the required condition for 

obtaining the ZVS in the second bridge, is met by 

this expression: 

                 𝑑 >
1−𝑀

2
,     I1 > 0. 

The following formula is employed to ensure the 

ZVS in the first bridge: 

𝑑 >
𝑀 − 1

2𝑀
 

 

(a) 

Fig. 7. The optimal operating 

waveform of the phase shift 

regulation. 

 

 (b) 

                                                

 

3. Simulation  

 

 

Fig. 8. Simulation of dual active bridge 

The intended DAB is simulated in MATLAB with a 

nominal power of 10 kw and a frequency of 100 kHz. 

Figure 8 depicts the DAB's simulated performance, 

where G1, G2 are gate pulses to S1-S4 and G11, G22 are 

gate pulses to S11-S44.The input dc voltage is 350V with 

0.001 Ohm and 220e-6 F for resistor and capacitor 

respectively.  Table 2 provides information on the 

parameters of the DAB, and Table 3 displays the values 

of the transformer.  

   

Fig. 9. Single phase shift 
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Figure 9 depicts the control system of the DAB by SPS. 

The pulses were generated using four pulse generators. 

This method is quite basic and simple. Tables 2 and 3 

were utilised as parameters for all control systems. The 

phase angle between pulses is shown in table 4. In SPS, 

the phase shift of S1 and S4 is zero, while the phase shift 

of S2 and S3 is180. As the phase shift of S11 and S44 is 

90, there is a outer phase shift between the pulses of the 

first and second bridges. In EPS, the phase shifts of S1–

S4 are in different positions due to the inner phase 

shift. However, S11-S44 is the same as SPS. In DPS, the 

phase shifts of S1-S4 and S11-S44 are in different 

positions due to the inner phase delay in the first and 

second bridges, which is the same inner phase delay. In 

TPS, there are two different inner phase shifts in the first 

and second bridges. 

Table 1 Parameter of dual active bridge 

Input voltage 350V 

Output voltage 200V 

R1 0.001 Ohm 

C1 220e-6 F 

R2 20 Ohm 

C2  220e-6 F 

 

Table 2 parameter of transformer 

Transformer  

350/200V  

10KW,100kHZ  

R = 0.2 Ohm  

L = 35uF  

Magnetization resistance = 5000 Ohm  

Magnetization inductance = 150.16 Ohm  

 

Table 3 phase angle of control methods 

 S1 S2 S3 S4 S11 S22 S33 S44 

SPS 0 180 180 0 90 270 270 90 

EPS 0 180 252 72 90 270 270 90 

DPS 72 252 216 36 126 306 270 90 

TPS 90 270 216 36 126 306 270 90 

  

Fig. 10 Single phase shift  

Figure 10 shows four pulses for two bridges. For a pulse 

generator block, the amplitude is 1, the period is 1/f = 

1/100 000H = 0.0001 s, and the pulse width is 50% of the 

period. But the phase delay is 0, 0.000005, 0.0000075, 

and 0.0000025. From this figure, we can see the outer 

phase delay between the first and second pulses. 

Fig. 11 Parameters of the transformer in the case of SPS. 

Figure 11 shows the ac outputs of the transformer are 

two-level. with a phase shift between these voltages. The 

primary and secondary currents have the same shape, 

which indicates that four different voltages apply to the 

inductor. Figure 12 displays the output voltage and 

current of a DAB. 
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Fig. 12 Output current and voltage in the case of SPS. 

 

Fig. 13 Extend phase shift. 

Figure 13 depicts the control system of the dual active 

bridge by EPS. G1 will generate pulses for S1 and S2, 

while G2 will generate pulses for S3 and S4. According 

to the second bridge, G11 will generate pulses for S11 

and S22, while G22 will generate pulses for S33 and S44.  

 

Fig. 14 The pulses of first bridge EPS. 

                     

 

Fig. 15 The second bridge pulses EPS. 

Figures 14 and 15 show the pulses of the first and second 

bridges, respectively. The phase delay is 0, 0.000007, 

0.0000075, and 0.0000025. All other parameters are the 

same as SPS. There is an outer phase delay between 

primary and secondary bridge pulses and only an inner 

phase delay in the first bridge. 

 

Fig. 16 Parameters of transformer in the case of EPS. 

Figure 16 shows the ac outputs of the transformer, first 

bridge with 3-level voltage and second bridge with 2-

level voltage. Figure 17 displays the output voltage and 

current of a dual-active bridge in the case of EPS. 

 

Fig. 17 Output current and voltage in the case of EPS. 

The control system of DAB by DPS is same as EPS in 

Figure 13 with phase delays of 0.000002, 0.000006, 

0.0000075, and 0.0000035. All other parameters are the 

same as SPS. 
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Fig. 18 The pulses of first bridge DPS. 

 

           Fig. 19 The second bridge pulses DPS.  

Figures 18 and 19 show the pulses of the primary and 

secondary sides of the bridge, with an outer phase delay 

between the primary and secondary bridge pulses and the 

same inner phase delay on both sides of the bridge. 

 

Fig. 20 Parameters of transformer in the case of DPS. 

Figure 20 depicts the voltage on both sides of the 

transformer, which is at three levels. Figure 21 displays 

the output voltage and current of a dual-active bridge in 

the case of DPS. 

 

Fig. 21 Output current and voltage in the case of DPS. 

The control system of the DAB by TPS is the same as 

EPS in figure 13, with phase delays of 0.0000025, 

0.000006, 0.000001, and 0.0000035.   

 

Fig. 22 The pulses of first bridge TPS. 

 

Fig. 23The second bridge pulses TPS. 

Figures 22 and 23 show the pulses of the first and second 

sides of the bridge, with an outer phase delay between 

the first and second bridge pulses and a different inner 

phase delay on both sides of the bridge. 
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Fig. 24 Parameters of transformer in the case of TPS. 

Figure 24 depicts the transformer's alternating current 

outputs; both sides of the transformer have three levels 

of voltage. Figure 25 displays the output voltage and 

current of a DAB in the case of TPS.   

 

Fig. 25 Output current and voltage in the case of TPS. 

4. CONCLUSION 

The control methods of DAB, DPS, EPS, SPS and TPS 

have been investigated in this study. The functioning 

principle of DAB, which is connected to a resistor, was 

evaluated using MATLAB. According to the findings of 

a study, SPS is the simplest to use, EPS is superior to SPS 

because of minimal losses, and DPS is the best approach 

because it has two inner phase shifts, while TPS is more 

difficult. conclusion that SPS is the simplest to use, EPS 

is superior to SPS because of minimal losses, and DPS is 

the best approach because it has two inner phase shifts 

while TPS is more difficult. For the DAB, zero voltage 

switching is emulated with an R load (SPS). This work 

compares between different control methods and explain 

how the DPS is the best method. 
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