

 ISSN: 2584-0495 Vol. 2, Issue 9, pp. 1162-1169

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

MPI for SPH Methods and Parallel Computing on CPUs and
GPUs

Premkumar S J Nayaka, Sunil Kumar, Aniket Singh, Mohammad Sohail

Cite as: Nayaka, P. S. J., Kumar, S., Singh, A., & Sohail, M. (2024). MPI for SPH Methods

and Parallel Computing on CPUs and GPUs. International Journal of Microsystems and IoT,

2(9), 1162–1169. https://doi.org/10.5281/zenodo.14066770

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 23 Sept 2024

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.14066770

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.14066770
https://doi.org/10.5281/zenodo.14066770
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1162

International Journal of Microsystems and IoT
Vol. 2, Issue 9, pp.1162-1169; DOI: https://doi.org/10.5281/zenodo.14066770

 MPI for SPH Methods and Parallel Computing on CPUs and GPUs
Premkumar S J Nayaka, Sunil Kumar, Aniket Singh, Mohammad Sohail

Maharshi Patanjali CPS Lab, BRICS Lab, Department of Computer Science and Engineering, National Institute of Technology,

Karnataka, Mangalore, India

KEYWORDS

Message Passing Interface (MPI);
Smoothed Particle Hydrodynamics
(SPH); GPU; Parallel Computing;
CUDA

1. INTRODUCTION

Parallel computing has revolutionized computational

simulations, empowering researchers to address increasingly

complex and large-scale problems [1-3]. The message passing

interface is a standardized protocol crucial for this

advancement, as it distributes computational tasks across

multiple processors, enabling the simultaneous execution of

intricate simulations. This capability is vital for scientific and

engineering disciplines, where simulations often involve

massive datasets and require significant processing power. By

dividing tasks among processors, MPI alleviates computational

bottlenecks, thus enhancing the efficiency of high-fidelity

simulations.

Parallel to the evolution of MPI, smoothed particle

hydrodynamics has emerged as a powerful method for

modeling complex fluid flows and interactions. Applied

initially to astrophysical simulations, SPH has gained

widespread adoption in various fields, including computational

fluid dynamics, biomechanics, and materials science [4]. The

method's strength lies in its ability to simulate complex physical

processes, especially those involving fluid dynamics and

astrophysical phenomena. However, as SPH simulations

increase in complexity and scale, the computational demands

also grow significantly.

To address these challenges, this paper explores the integration

of MPI to enhance the computational efficiency of SPH

simulations. By parallelizing SPH simulations, MPI can help

overcome the computational hurdles associated with large-

scale simulations, allowing for more detailed exploration and

analysis of fluid dynamics on an intricate side.

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

The subsequent sections cover the fundamentals of SPH, the

challenges posed by growing simulation complexity, and the

rationale for parallelizing SPH with MPI [5]. Details of the

implementation process, performance improvements, and

practical implications of integrating MPI into SPH simulations

are provided. The goal is to showcase MPI's potential as a

powerful tool for optimizing SPH computational efficiency,

paving the way for more accurate and scalable simulations in

fluid dynamics and related fields.

Fig. 1 Particle approximations using a circular kernel.

Despite its advantages, SPH can be computationally

expensive, especially for large-scale problems involving

millions or billions of particles [6,7]. In SPH, particles

represent fluids, with each particle's fluid properties

determined through interactions with neighboring particles.

This mesh-free approach is well-suited for complex

geometries and large deformations. Still, it underscores the

need for efficient computational strategies, such as those

provided by MPI, to manage the intensive computational

demands [8-10].

ABSTRACT

Message Passing Interface (MPI) is a standard designed for parallel programming on distributed
memory systems, enabling multiple processors to work together by dividing and distributing tasks. This
paper presents a comprehensive approach to addressing computational challenges in smoothed particle
hydrodynamics (SPH) simulations through a novel MPI-based parallel SPH code. The research
emphasizes code optimization for both CPU and GPU architectures, incorporating CUDA parallel
programming to enhance GPU performance. Detailed insights into the code design, implementation,
algorithm flowchart, and multi-GPU usage with MPI are provided. Experimental results demonstrate
the model’s efficiency and scalability across various scenarios, laying a solid foundation for advancing
research in fluid dynamics and parallel computing.

https://doi.org/10.5281/zenodo.14066770
https://www.isve.in/default?page=adminisve&pid=home

1163

The smoothed particle hydrodynamics addresses the governing

partial differential equations using two essential processes:

kernel approximation and particle approximation. In kernel

approximation, the function values from nearby particles are

summed to estimate integrals. Particle approximation utilizes a

collection of particles, each containing field variable data, to

model the computational domain, as depicted in Figure 1.

The rest of the paper is structured as follows: Section 2 provides

related work. Section 3 details the proposed methodology.

Section 4 presents experimental results. Finally, Section 5

concludes the paper.

2. RELATED WORKS

Research in the field of Smoothed Particle Hydrodynamics and

its computational challenges has been extensive. Numerous

studies have focused on improving SPH simulations' accuracy,

stability, and efficiency. The integration of parallel computing

techniques, particularly the use of MPI, has been a major area

of interest to address the computational demands of large-scale

simulations.

Barcarolo et al. [11] introduced adaptive particle refinement

(APR) and dynamic de-refinement techniques to enhance the

accuracy and efficiency of SPH simulations. APR involves

refining particle resolution in critical regions, while de-

refinement reduces resolution in less essential areas, aiming for

better computational efficiency and accuracy. However, the de-

refinement technique is still under development, facing

challenges such as the need for effective flow stabilization and

managing varying rates of refinement and de-refinement. These

issues can affect overall simulation stability and accuracy,

making it necessary to refine these techniques further.

Domínguez et al. [12] developed a multi-GPU implementation

for SPH on heterogeneous clusters, leveraging the

computational power of both CPUs and GPUs to achieve high

performance. The approach utilized parallel programming

languages such as MPI, CUDA, and OpenMP, incorporating

dynamic load balancing and overlapping data communication to

optimize performance. The implementation demonstrated

significant improvements in efficiency and scalability, handling

various particle numbers and GPU configurations. However, its

heavy reliance on modern high-performance computing

architectures might limit its applicability in less specialized or

conventional systems. Efforts to adapt this implementation for

a broader range of hardware configurations could enhance its

usability.

Holmes et al. [13] proposed a comprehensive framework for

parallel computational physics algorithms on multi-core

architectures. Their method addresses challenges in achieving

efficient parallel computing within shared-memory

environments, focusing on mitigating race conditions and

optimizing memory usage. The framework includes a spatial

sub-division algorithm that ensures thread safety by operating

on isolated memory blocks. Microsoft's concurrency and

coordination runtime (CCR) facilitates multi-core

programming, allowing for the effective management of parallel

tasks. Despite its innovative design, the framework's complexity

and focus on shared-memory systems might limit its application

in distributed memory environments where alternative

strategies might be necessary.

Oger et al. [14] presented an MPI-based parallelization scheme

specifically for high-performance computing (HPC)

environments using the DualSPHysics code. They focused on

enhancing the scalability and efficiency of SPH simulations

across various test problems. The implementation achieved

notable scalability improvements, facilitating efficient

simulations on large HPC clusters. However, the scheme's

dependence on MPI as the primary communication protocol

could restrict its flexibility, particularly when integrating with

other parallelization methods or adapting to less sophisticated

computing infrastructures. Future work may explore hybrid

approaches to address these limitations.

Liu et al. [15] introduced an MPI-based parallel framework

designed for SPH simulations of extreme mechanic problems,

such as high-speed impacts and large deformations. The

framework emphasizes optimized memory management,

including cache-friendly data storage and spatial/temporal

locality improvements. A two-step load-balancing method

enhances parallel efficiency, achieving a maximum efficiency

of 97% on 10,020 CPU cores. While this framework effectively

addresses extreme conditions and achieves high performance,

its specialization and substantial computational resource

requirements may limit its applicability to less intensive

simulations. Broader applicability might require adjustments to

handle a wider range of scenarios.

Zhu et al. [16] proposed a novel MPI-based parallel framework

to address computational challenges in SPH for modeling free

surface flows. This framework incorporates domain

decomposition, a regular background grid, and an index

ordering method to enhance scalability on high-performance

computing systems. A dynamic load-balancing strategy is

introduced to optimize computational load distribution based on

particle numbers and running times. Although this framework

significantly reduces computational costs for large-scale

simulations, its complexity and dependence on HPC systems

could limit its use in smaller-scale or non-HPC environments.

Adapting this framework to a broader range of computing

environments could expand its utility.

Antonelli et al. [17] developed a CUDA-based implementation

of an enhanced SPH method on GPUs to improve accuracy and

computational efficiency for fluid dynamics simulations. Their

approach uses a Taylor series expansion to refine the SPH

method, achieving substantial speedups and enhanced accuracy

through parallelization on NVIDIA GPUs. While the method

demonstrates impressive performance improvements, its

reliance on CUDA and specific NVIDIA GPU architectures

limits its general applicability. Systems without NVIDIA

hardware might not benefit from these advancements,

suggesting a need for alternative implementations compatible

with different hardware platforms.

Li et al. [18] designed "petaPar," a scalable petascale framework

for meshfree and particle simulations, including SPH and the

material point method (MPM). Implemented within a unified

object-oriented structure, petaPar uses MPI and Pthreads for

1164

dynamic load balancing and fully overlapping communication

and computation. Evaluated on various HPC platforms,

including the Titan supercomputer, petaPar demonstrated

excellent scalability. However, its current design is optimized

for CPU-based platforms, with plans to extend support to GPU-

based systems. The framework's immediate applicability to

GPU environments is limited, though its expansion could

enhance its utility across diverse computing platforms.

Table. 1 MPI-Based Parallel Computing

Author Approach Metrics Limitation

Barcarolo

et al. [11]

Adaptive Particle

Refinement and
Coarsening method in

SPH

 Numerical

Validation

Flow stabilization

requirement,
Derefinement

technique under

develop

Domíngu

ez et al.

[12]

Multi-GPU

Implementation for

SPH on Heterogeneous

Clusters using MPI,
CUDA, OpenMP

Efficiency

and

Scalability

on Different
Clusters

Only available for

heterogeneous

clusters

Holmes et

al. [13]

Spatial Sub-Division

Algorithm, Load-
Balanced Spatial

Distribution for Parallel

Computing in
MultiCore Shared-

Memory Environment

Scalability,

Memory
Efficiency,

Load

Balancing,
Robustness

Bottleneck in

Distributed
Computing, Thread

Safety Challenges,

Complexity in
Implementation

Oger et al.

[14]

Distributed Memory

MPI-Based
Parallelization Scheme

for SPH in

DualSPHysics

Scalability,

Efficiency on
Test

Problems

Only implemented

in DualSPHysics
code

Liu et al.

[15]

MPI-based

Parallelization,

Memory Management,
Load Balancing for

SPH

Numerical

Validation,

Scalability
Tests

Hardware

Dependence,

Complexity,
Specific Use Cases,

Computational

Resources

Zhu et al.

[16]

Parallel MPI

Framework

Incorporating Regular
Background Grids and

Dynamic Load

Balancing for SPH
Simulations.

Benchmarks,

Numerical

Experiments,
Parallel

Performance

Specificity to SPH,

Computational

Costs, Hardware
Dependence,

Complexity

Antonelli

et al. [17]

CUDA Implementation

of Improved SPH
Method

Runtime

Evaluation,
Water Entry,

Shock Wave

Interaction

GPU-specific

implementation

Li et al.
[18]

PI and P-threads for
Overlapping

Communication and

Computation, Dynamic
Load Balancing in

Particle Simulation

Scalability
Evaluation

on HPC

Platforms

CPU-based
platform, potential

GPU extension

These studies underscore the importance of integrating

advanced computational strategies to enhance SPH simulation

performance. This paper builds on these foundational works by

introducing a novel MPI-based parallel SPH code optimized for

CPU and GPU architectures, providing detailed insights into the

implementation and performance benefits mentioned in Table 1.

3. PROPOSED METHODOLOGY

This section focuses on developing a new MPI-based parallel

SPH code designed to run on both CPUs and GPUs. The goal is

to address the computational challenges faced by existing MPI-

based parallel SPH codes, which are primarily designed for

CPU-based computers. GPUs can accelerate SPH simulations

significantly, but their programming complexity poses a hurdle.

The proposed work aims to bridge this gap and achieve an

efficient distribution of the computational load between CPUs

and GPUs.

3.1 Code Design and Implementation

A new MPI-based parallel SPH code has been designed and

optimized for CPU and GPU architectures. This involves

exploring techniques for efficient load balancing, data

communication, and task distribution to harness the parallel

processing capabilities of both types of processors. The

implementation leverages the CUDA parallel programming

architecture to utilize GPU capabilities efficiently. The three

core processes of SPH—neighbor search, force calculation, and

system updates—are parallelized on the GPU through the use of

execution threads. After transferring particle data from the CPU

to the GPU, all particle information is retained on the GPU for

the entire duration of the simulation [4] [19]. Occasional data

transfers from GPU to CPU are performed when saving

simulation information, minimizing computationally expensive

data transfers. The GPU implementation utilizes a neighbor list

analogous to those employed in serial CPU approaches, such as

the cell-linked list. CUDA's radix-sort algorithm enhances the

parallelization of operations involved in constructing the cell-

linked list [20]. Particle properties are updated using separate

execution threads on the GPU, and CUDA's reduction algorithm

further optimizes parallelization for certain tasks. The most

computationally expensive part of particle interaction uses one

thread per particle to calculate the forces arising from

interactions with neighboring particles.

3.2 Algorithm Flowchart

The flowchart depicted in Figure 2 visually represents the

sequential order of these steps and their links to one another.

3.2.1 Initialize MPI Processes

Enable parallel computation, set up communication channels

among processes, and determine the total number of processes

in the MPI communicator [20].

3.2.2 Initialize SPH Parameters

Set fundamental parameters for SPH simulation, including

particle properties, simulation domain specifications, and the

time step definition.

3.2.3 Domain Subdivision

1165

Divide the physical domain into subdomains, assigning each to

a specific MPI process. Ensure adjacent MPI processes handle

neighbouring subdomains for efficient communication during

force calculations [21].

Fig. 2 Abstract view of Proposed Framework

3.2.4 Overlapping Communication and

Computation

Implement a strategy for overlapping communication and

computation to minimize idle time. Optimize force calculations

to occur concurrently with data exchanges between MPI

processes, enhancing overall simulation efficiency.

3.2.5 Load Balancing

Incorporate a load balancing strategy to distribute the

computational load evenly. This may involve dynamically

adjusting the time step based on the workload of each MPI

process, minimizing computational time differences.

3.2.6 Compute Density and Kernel

Approximation

Calculate particle density using the SPH density equation and

kernel approximation for particles within the assigned

subdomain. Sum contributions from neighboring particles

within the kernel support an accurate density estimate.

3.2.7 Compute Momentum

Utilize the momentum equation to compute particle

acceleration, considering pressure, density, gravitational

effects, and viscous terms. This comprehensive evaluation

accounts for particle motion.

3.2.8 Update Density

Update particle density based on the continuity equation. Sum

contributions from neighboring particles within the interaction

distance to reflect changes in density due to particle motion and

interaction.

3.2.9 Compute Pressure

Tait's equation of state is applied to calculate the pressure of

particles. Evaluate the equation to determine pressure based on

the updated density [22].

3.3 Multi-GPU Implementation with MPI

A secondary level of parallelization is achieved through the use

of MPI, which enables inter-device communication and the

integration of resources across multiple machines. The

simulation's spatial domain is segmented into subdomains, with

each MPI process responsible for managing and processing a

portion of the particle data within its respective subdomain. This

setup allows for effective computation across heterogeneous

clusters, optimizing the utilization of all available processing

resources.

3.3.1 Domain Subdivision

The physical domain is subdivided into subdomains, with each

subdomain assigned to separate MPI processes. This

subdivision scales the simulation to expand proportionally with

the number of machines employed. The main factors

contributing to inefficiency, such as data exchange and

synchronization, are addressed through careful domain

subdivision and load-balancing strategies.

3.3.2 Subdivision Strategy

The domain is partitioned into particle blocks, with each block

assigned to a different MPI process. Each subdomain interacts

with two neighboring subdomains, except those located at the

edges of the simulation box. Data exchange between processes

is necessary to calculate forces, and each process needs to obtain

data on neighboring particles within the interaction distance

(halo). Figure 3, as mentioned in [23], illustrates the division of

a domain into three subdomains (0, 1, and 2) and highlights the

halo concept, essential for force calculations.

1166

Fig. 3 Domain subdivision into three subdomains with halo

regions

3.3.3 Overlapping Communication and

Computation

To reduce communication time, forces on each subdomain are

calculated so that communications and computations overlap.

This optimization aims to enhance efficiency, especially with an

increasing number of MPI processes.

3.3.4 Load Balancing

Load balancing is crucial for efficiency, and a variable time step

computed following a specified method is employed. This

variable time step minimizes the difference in computation time

required for the fastest and slowest processes, mitigating

efficiency loss during synchronizations.

3.4 Algorithm Description

The proposed MPI-based parallel SPH algorithm utilizes the

following equations to simulate fluid dynamics efficiently. It

briefly overviews the fundamental equations, and their

application in the algorithm is discussed below.

3.4.1 Density and Kernel Approximation

The density function 𝜌(𝑥) in equation 1 is discretized using the

SPH method. The discrete form based on particles is expressed

as follows, where the approximation is interpolated at a particle

i, and a summation is executed over all particles located within

the kernel's region of compact support.

𝐹(𝑟𝑎) ≈ ∑ 𝐹

𝑏

(𝑟𝑏)𝑊(𝑟𝑎 − 𝑟𝑏 , ℎ)𝛥𝑣𝑏 (1)

Here, 𝑚𝑗 is the mass of particle 𝑗, and 𝑊 is the kernel function.

If 𝑊(𝑥𝑖 − 𝑥𝑗, ℎ) is chosen such that 𝑊 = 1 when 𝑥𝑖 − 𝑥𝑗,

with 𝑚𝑗 − 𝑝𝑗 , equation 2 becomes:

 𝐹(𝑟𝑎) ≈ ∑ 𝐹𝑏 (𝑟𝑏)
𝑚𝑏

𝜌𝑏
𝑊(𝑟𝑎 − 𝑟𝑏) (2)

3.4.2 Momentum Equation

The momentum equation in equation 3, as proposed by [4], is

employed to determine the acceleration (𝑎𝑖) of a particle (𝑖)

resulting from interactions with its neighbors (𝑗):

𝑑𝑣𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

(
𝑝𝑏

𝜌𝑏
2 −

𝑝𝑎

𝜌𝑎
2 + 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝑔 (3)

Here 𝑣𝑖 is the velocity, 𝑝𝑖 is the pressure, 𝜌𝑖 is density, 𝑚𝑖

denotes mass, 𝑔 stands for gravitational acceleration, 𝛱𝑖𝑗 is the

viscous term based on the artificial viscosity model as proposed

in [4].

3.4.3 Continuity Equation

The continuity equation or mass conservation principle, as

expressed in equation 4, in SPH form [4], is used to compute

change in fluid density:

 𝑑𝜌𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

𝑣𝑎𝑏 ∗ 𝛻𝑎𝑊𝑎𝑏 (4)

3.4.4 Pressure Calculation

Pressure (𝑝𝑎) is computed from density based on Tait's

equation [17] of state, as specified in equation 5.

 𝑃𝑎 = 𝐵 ((
𝜌𝑎

𝜌𝑜
)

𝛾
− 1) (5)

Where 𝐵 is the constant, 𝛾 is the adiabatic index, 𝜌0 is the

reference density, and the speed of sound (𝑐𝑜)is determine by

equation 6:

𝑐0 = (𝑐𝜌0) = √(
𝜕𝑃

𝜕𝜌
)

𝜌𝑜

 (6)

3.4.5 Temporal Integration Method

1167

A variable time-step Verlet algorithm [24-25] is utilized for

time integration, with the step size determined by the Courant–

Friedrich–Levy (CFL) condition, the applied forces, and

viscous diffusion, as outlined in [26].

3.5 MPI-Based Parallelization

The algorithm is parallelized using MPI, where the physical

domain is categorized into subdomains assigned to separate

MPI processes. Communication between devices is

established, allowing the combination of resources from

multiple machines. The load-balancing strategy is employed

to minimize computational time differences among processes.

3.5.1 Domain Subdivision

The domain is subdivided into particle blocks, each allocated

to separate MPI processes. All subdomains are surrounded by

two neighboring subdomains, except for those positioned at

the boundaries of the simulation box. Data exchange between

processes is necessary for force calculations, and each process

needs to obtain data on neighboring particles within the

interaction distance (halo).

3.5.2 Overlapping Communication and

Computation

To reduce communication time, force calculation for each

subdomain is structured in a way that allows communication

and computation to occur simultaneously. This optimization

aims to enhance efficiency, especially with an increasing

number of MPI processes.

3.5.3 Load Balancing

It is crucial for efficiency, and a variable time step is used to

minimize the difference in computation time between the

fastest and slowest processes, mitigating efficiency loss during

synchronizations.

4. EXPERIMENT RESULTS

This section presents the experimental outcomes from the

smoothed particle hydrodynamics simulations. The simulations

were performed on an 11th Gen Intel(R) Core(TM) i5-11500 @

2.70GHz processor with six cores and 12 threads, using the

mpic++ compiler on a linux ubuntu system. The focus was on

evaluating the computational time required for executing SPH

simulations across multiple cores. The simulation parameters

were set to 𝑇 = 5.0, 𝛥𝑡 = 0.0001,∧ ℎ = 0.01, with no

compiler optimizations applied.

Table 2 details the computational times, measured in

milliseconds, for both serial and parallel implementations of the

SPH simulations. These also include the number of processes

used in the parallel simulations. These results provide a

thorough assessment of the SPH model's efficiency and

scalability, demonstrating its performance under the specified

computational conditions.

4.1 Simulation Output Analysis

The SPH simulation was executed using the following

command:𝑚𝑝𝑖𝑟𝑢𝑛 − 𝑛𝑝6 . 𝑆𝑃𝐻𝑚𝑎𝑖𝑛⁄ . 𝑜𝑢𝑡𝑖𝑐𝑑𝑟𝑜𝑝𝑙𝑒𝑡 −
−𝑑𝑡0.01 − −𝑇5 − −ℎ0.01. This command utilizes six

processes for parallel execution, simulates the droplet scenario

(− − 𝑖𝑐 − 𝑑𝑟𝑜𝑝𝑙𝑒𝑡), uses a time step (− − 𝑑𝑡) of 0.01, runs

the simulation for a period (− − 𝑇) of 5 seconds, and sets the

particle radius of influence (− − ℎ) to 0.01 shown in Figure 4.

Fig. 4 Performance of the SPH model under different settings

4.2 Performance Metrics

The simulations employed varying numbers of processes to

evaluate the model's performance. Table 2 presents millisecond

running times for the Dam-break and Droplet scenarios,

measured under different parallel processing conditions. These

simulations are executed in an HPC environment to assess the

scalability and efficiency of the implemented model. The

number of particles for each simulation is also indicated in

Table 2.

The experimental results demonstrate significant improvements

in computational efficiency with the MPI-based parallel SPH

implementation. The adopted parallelization strategy effectively

reduces computational times, as evidenced by the droplet

simulation time decreasing from 2468 ms with a single process

to 859 ms with six processes, an improvement factor of

approximately 2.87. These results align with and extend the

findings of others [5,8] who utilized multi-GPU and MPI

techniques for SPH simulations. This implementation explicitly

addresses overlapping communication and computation

challenges and incorporates a load-balancing strategy to

minimize computation time differences among processes. These

enhancements position this work as a major contribution to the

1168

field of SPH simulations, highlighting the effectiveness of MPI

in enhancing computational performance in fluid dynamics and

related fields.

Table. 2 Simulation Performance Metrics (Times in (ms)

5. CONCLUSION

This paper presents a novel MPI-based parallel SPH code

designed to leverage CPU and GPU architectures, addressing

the computational challenges of large-scale SPH simulations.

Results show substantial performance improvements, with

parallel implementations reducing computational times by up to

66% compared to serial approaches. The scalability of the

approach is evident, with efficiency gains observed as the

number of processes increased. For instance, the parallelization

using six processes reduced the running time for the Dam-break

scenario to 1118 milliseconds and the Droplet scenario to 859

milliseconds. These results highlight the potential of MPI-based

parallelization to optimize SPH simulations, facilitating more

detailed and accurate fluid dynamics analysis in complex

scenarios. The implementation's capability to handle large

particle counts efficiently opens avenues for further exploration

and refinement, particularly in adapting the methodology to a

broader range of computational environments.

REFERENCES

1. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman,

B. (2011). High performance computing using MPI and OpenMP on
multi-core parallel systems. Parallel Computing, 37(9), 562-575.

 https://doi.org/10.1016/j.parco.2011.02.002

2. Kumar, S., & Bhowmik, B. (2024, January). Emergence, Evolution, and
Applications of Cyber-Physical Systems in Smart Society. In 2024 Fourth

International Conference on Advances in Electrical, Computing,

Communication and Sustainable Technologies (ICAECT) (pp. 1-8). IEEE.
 https://doi.org/10.1109/ICAECT60202.2024.10468864

3. Saxena, D., & Bhowmik, B. (2024, May). Analysis of Selected Load

Balancing Algorithms in Containerized Cloud Environment for
Microservices. In 2024 IEEE 4th International Conference on VLSI

Systems, Architecture, Technology and Applications (VLSI SATA) (pp. 1-

6). IEEE. https://doi.org/10.1109/VLSISATA61709.2024.10560139
4. Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on

progress in physics, 68(8), 1703. https://doi.org/10.1088/0034-

4885/68/8/R01
5. Jagtap, P., Nasre, R., Sanapala, V. S., & Patnaik, B. S. V. (2021). Efficient

parallelization of SPH algorithm on modern multi-core CPUs and

massively parallel GPUs. International Journal of Modeling, Simulation,
and Scientific Computing, 12(06), 2150054.

https://doi.org/10.1142/S1793962321500549

6. Girish, K. K., Kumar, S., & Bhowmik, B. R. (2024). Industry 4.0: Design
Principles, Challenges, and Applications. Topics in Artificial Intelligence

Applied to Industry 4.0, 39-68.

https://doi.org/10.1002/9781394216147.ch3
7. Yang, E., Bui, H. H., De Sterck, H., Nguyen, G. D., & Bouazza, A. (2020).

A scalable parallel computing SPH framework for predictions of

geophysical granular flows. Computers and Geotechnics, 121, 103474.
https://doi.org/10.1016/j.compgeo.2020.103474

8. Violeau, D., & Rogers, B. D. (2016). Smoothed particle hydrodynamics

(SPH) for free-surface flows: past, present and future. Journal of
Hydraulic Research, 54(1), 1-26.

https://doi.org/10.1080/00221686.2015.1119209

9. Hegde, A., & Bhowmik, B. (2024, April). Big Data Insights: Pioneering
Changes in FinTech. In 2024 IEEE 9th International Conference for

Convergence in Technology (I2CT) (pp. 1-6). IEEE.

https://doi.org/10.1109/I2CT61223.2024.10543820
10. Saxena, D., & Bhowmik, B. (2023, November). Paradigm shift from

monolithic to microservices. In 2023 IEEE International Conference on
Recent Advances in Systems Science and Engineering (RASSE) (pp. 1-7).

IEEE. https://doi.org/10.1109/I2CT61223.2024.10543820

11. Barcarolo, D. A., Le Touzé, D., Oger, G., & De Vuyst, F. (2014). Adaptive

particle refinement and derefinement applied to the smoothed particle
hydrodynamics method. Journal of Computational Physics, 273, 640-657.

https://doi.org/10.1016/j.jcp.2014.05.040

12. Domínguez, J. M., Crespo, A. J., Valdez-Balderas, D., Rogers, B. D., &

Gómez-Gesteira, M. (2013). New multi-GPU implementation for
smoothed particle hydrodynamics on heterogeneous clusters. Computer

Physics Communications, 184(8), 1848-1860.
https://doi.org/10.1016/j.cpc.2013.03.008

13. Holmes, D. W., Williams, J. R., & Tilke, P. (2011). A framework for

parallel computational physics algorithms on multi-core: SPH in
parallel. Advances in Engineering Software, 42(11), 999-1008.

https://doi.org/10.1016/j.advengsoft.2011.05.017

14. Oger, G., Le Touzé, D., Guibert, D., De Leffe, M., Biddiscombe, J.,
Soumagne, J., & Piccinali, J. G. (2016). On distributed memory MPI-

based parallelization of SPH codes in massive HPC context. Computer

Physics Communications, 200, 1-14.
https://doi.org/10.1016/j.cpc.2015.08.021

15. Liu, J., Yang, X., Zhang, Z., & Liu, M. (2024). A massive MPI parallel

framework of smoothed particle hydrodynamics with optimized memory
management for extreme mechanics problems. Computer Physics

Communications, 295,108970. https://doi.org/10.1016/j.cpc.2023.108970

16. Zhu, G., Hughes, J., Zheng, S., & Greaves, D. (2023). A novel MPI-based
parallel smoothed particle hydrodynamics framework with dynamic load

balancing for free surface flow. Computer Physics

Communications, 284,108608. https://doi.org/10.1016/j.cpc.2022.108608
17. Antonelli, L., Francomano, E., & Gregoretti, F. (2021). A CUDA-based

implementation of an improved SPH method on GPU. Applied

Mathematics and Computation, 409, 125482.
https://doi.org/10.1016/j.amc.2020.125482

18. Li, L., Wang, Y., Ma, Z., & Tian, R. (2014, August). petaPar: a scalable

Petascale framework for meshfree/particle simulation. In 2014 IEEE
International Symposium on Parallel and Distributed Processing with

Applications (pp. 50-57). IEEE. https://doi.org/10.1109/ISPA.2014.16

19. Khayyer, A., Gotoh, H., Shimizu, Y., & Gotoh, T. (2024). An improved
Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid-

structure interactions. Engineering Analysis with Boundary

Elements, 158, 332-355.
https://doi.org/10.1016/j.enganabound.2023.10.018

20. Gao, J., Fan, H., Chen, G., Wang, W., & Zhang, H. (2024). Verification

of 3D DDA-SPH coupling method and its application in the analysis of
geological disasters. Engineering Analysis with Boundary Elements, 158,

68-84. https://doi.org/10.1016/j.enganabound.2023.10.013

21. Pourlak, M., Akbari, H., & Jabbari, E. (2023). Importance of initial
particle distribution in modeling dam break analysis with SPH. KSCE

Journal of Civil Engineering, 27(1), 218-232.

https://doi.org//10.1007/s12205-022-0304-1

22. Chen, Y. K., Meringolo, D. D., & Liu, Y. (2024). SPH numerical model

of wave interaction with elastic thin structures and its application to
elastic horizontal plate breakwater. Marine Structures, 93, 103531.

https://doi.org/10.1016/j.marstruc.2023.103531

23. Domínguez, J. M., Crespo, A. J., Valdez-Balderas, D., Rogers, B. D., &
Gómez-Gesteira, M. (2013). New multi-GPU implementation for

smoothed particle hydrodynamics on heterogeneous clusters. Computer

No of Process Dam Break (ms) Droplet (ms)

1 3292 2468

2 1907 1465

4 1273 1120

6 1118 859

No of Particle 400 340

https://doi.org/10.1016/j.parco.2011.02.002
https://doi.org/10.1109/ICAECT60202.2024.10468864
https://doi.org/10.1088/0034-4885/68/8/R01
https://doi.org/10.1088/0034-4885/68/8/R01
https://doi.org/10.1142/S1793962321500549
https://doi.org/10.1002/9781394216147.ch3
https://doi.org/10.1016/j.compgeo.2020.103474
https://doi.org/10.1080/00221686.2015.1119209
https://doi.org/10.1109/I2CT61223.2024.10543820
https://doi.org/10.1109/I2CT61223.2024.10543820
https://doi.org/10.1109/ICSENS.2005.1597859
https://doi.org/10.1016/j.advengsoft.2011.05.017
https://doi.org/10.1016/j.cpc.2023.108970
https://doi.org/10.1016/j.cpc.2022.108608
https://doi.org/10.1016/j.amc.2020.125482
https://doi.org/10.1109/ISPA.2014.16
https://doi.org/10.1016/j.enganabound.2023.10.018
https://doi.org/10.1016/j.enganabound.2023.10.013
https://doi.org/10.1007/s12205-022-0304-1
https://doi.org/10.1016/j.marstruc.2023.103531

1169

 Physics Communications, 184(8), 1848-1860.

https://doi.org/10.1016/j.cpc.2013.03.008
24. Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge

university press.

25. Verlet, L. (1967). Computer" experiments" on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules. Physical

review, 159(1), 98. https://doi.org/10.1103/PhysRev.159.98

26. Monaghan, J. J., & Kos, A. (1999). Solitary waves on a Cretan
beach. Journal of waterway, port, coastal, and ocean

engineering, 125(3), 145-155. https://doi.org/10.1061/(ASCE)0733-

950X(1999)125:3(145)

AUTHORS:

Premkumar S J Nayak received his BTech

degree from V.T.U, Karnataka, India in 2023.

He is currently pursuing MTech at the

Department of Computer Science and

Engineering, National Institute of Technology

Karnataka, Mangalore, India. His areas of interest are big data,

deep learning and embedded systems.

E-mail: sjpremkumarnayaka.232cs030 @nitk.edu.in

Sunil Kumar received his BTech degree from

A.K.T.U, Uttar Pradesh, India in 2016 and

MTech degree in Computer Science and

Engineering from National Institute of

Technology Jalandhar, Punjab, India in 2019.

He is currently pursuing PhD at the

Department of Computer Science and

Engineering, National Institute of Technology Karnataka,

Mangalore, India. His research interest includes medical cyper-

physical systems, formal verification, deep learning, medical

imaging, embedded systems, artificial intelligence,

computational intelligence and internet of things.

E-mail: sunilk.217cs010@nitk.edu.in

Aniket Singh received his BTech degree

from Sagar Institute of Research and

Technology, Madhya Pradesh, India in

2023. He is currently pursuing MTech at

the Department of Computer Science and

Engineering, National Institute of

Technology Karnataka, Mangalore, India.

His areas of interest are computer networking, big data, and

computational intelligence.

E-mail: aniketsingh.232cs001@nitk.edu.in

Mohammad Sohail received his BTech

degree from Madhav Institute of

Technology and Science, Madhya Pradesh,

India in 2020. He is currently pursuing

MTech at the Department of Computer

Science and Engineering, National

Institute of Technology Karnataka,

Mangalore, India. His areas of interest are big data, deep

learning, and embedded systems.

E-mail: mohammadsohail.232cs018@nitk.edu.in

https://doi.org/10.1016/j.cpc.2013.03.008
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
mailto:sjpremkumarnayaka.232cs030@nitk.edu.in
mailto:sunilk.217cs010@nitk.edu.in
mailto:sunilk.217cs010@nitk.edu.in
file:///D:/aniketsingh.232cs001@nitk.edu.in
.d:/mohammadsohail.232cs018@nitk.edu.in

