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1. INTRODUCTION 

The escalating demand for wireless devices, particularly in the 

realm of Internet of Things (IoT) devices and wireless sensor 

networks, is projected to soar, potentially exceeding 29 billion 

IoT connections by 2027 as in [1]. This surge intensifies 

concerns regarding spectrum scarcity and underutilization as 

discussed in [2]-[4]. Remarkably, reports from the Federal 

Communications Commission (FCC) indicate that licensed 

spectrum remains underutilized by approximately 90% as 

given in [5]. 

Within this landscape, the emergence of cognitive radio 

networks stands as a transformative solution within 5G 

applications. It specifically focuses on issues related to 

spectrum shortage. Cognitive Radio (CR), originally 

introduced by Joseph Mitola in 1995, is an outstanding 

approach for 5G applications. It facilitates Secondary Users 

(SU) without a license to make use of unoccupied spectrum 

bands, commonly known as "spectrum holes." It accomplishes 

this in what is known as the "interweave paradigm" [6] 

without interfering with licensed Primary Users (PU). 

When considering TV channel usage, cognitive radio 

technology is an innovative technique for maximizing the 

radio's electromagnetic spectrum usage. Implementing a 

cognitive radio using IEEE 802.22 devices requires 

responsible spectrum usage and is in accordance with the 

Cognitive Wireless RAN Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications in [7]. It involves 

keeping a close watch on wireless microphone transmissions, 

TV broadcasts, signals, necessary medical telemetry devices, 

and signals from protective devices like the IEEE 802.22.1 

wireless beacon. Cognitive radio, which operates under TV 

channels, greatly improves spectrum utilization while 

respecting regulations as well as decreasing interference in 

areas that are designated. Sensing the availability of spectrum 

holes for such applications is called spectrum sensing, which 

is discussed in the following section. 

At the core of CR networks lies spectrum sensing, and as 

discussed in [8] a pivotal process involving the periodic 

monitoring of specific frequency bands to identify PU is 

present or absent. These bands are categorized as white space, 

characterized by complete emptiness except for noise as 

shown in Fig. 1. Using the interweave paradigm, secondary 
 

users exploit spectrum holes by operating orthogonally to 

primary user signals in any of space, time, and frequency 

dimensions [6]. 

Fig.1 Spectrum Sensing Classification 

A The organization of this work is in the following manner: 

Section I. gives the Introduction to Cognitive Radio and the 

pivotal role of spectrum sensing, Section II. discusses the 

different methodologies that are being employed in order to 

carry out spectrum sensing, Section III. describes the system 

model of the proposed algorithm in detail, Section IV. 

discusses the Implementation Results in detail followed by 

Section V. that provides a Conclusion for the work and also 
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The cognitive radio network represents a pivotal advancement for 5G applications, countering the 
limitations posed by spectrum scarcity. Spectrum sensing is vital for identifying vacant spectrum bands 
in a network framework that comprises of Primary User (PU) and Secondary Users (SU’s). The 
traditional spectrum sensing scheme like Energy detection is highly sensitive to uncertainties in noise 
with limited sensing accuracy. To overcome this limitation a novel method, Average Slope Detection 
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simulated in MATLAB The classification of noise and PU is done be integrating Machine Learning 
algorithm, K-Nearest Neighbor which shows an improved accuracy by 18.34% over existing methods 
for a SNR -20dB. 

https://doi.org/10.5281/zenodo.15463178


1474 
 

briefs the Scope for Future Work 

 

2. RELATED WORK 

In the evolution of cognitive radio, several spectrum sensing 

schemes have been proposed and researched extensively. 

One if the traditional spectrum sensing schemes has been 

Energy detection which is a non-coherent detection method. It 

doesn’t require prior knowledge of primary users. Further, it 

doesn’t require any intricate receiver designs [9]. Even though 

the computational complexity of energy detection is simple, 

the performance of this scheme is greatly affected in low SNR 

cases [10]. 

The matched filter (MF) technique proves to be an optimal 

approach for detecting spectrum availability by maximizing 

Signal to Noise Ratio (SNR), even during presence of 

Additive White Gaussian Noise (AWGN). This capability is 

achieved through the inherent correlation process of the 

method. 

Prior information of the PU is needed in the form of a pilot 

sequence. The pilot signal refers to a known and 

predetermined signal that is transmitted by the PU in a 

communication system. The primary purpose of the pilot 

signal is to assist in the spectrum sensing process carried out 

by a secondary user (SU) in a cognitive radio network. 

However, effective implementation of this detector 

necessitates a thorough understanding of the primary user 

(PU) signal, and a dedicated receiver must be allocated for 

each PU signal [11]. 

Another widely recognized approach is the Cyclisation 

method. This method leverages the periodicity present in the 

received signal and effectively distinguishes PU and noise. 

Unlike energy detection, it requires prior information about 

the PU. Another drawback of this method is reduced 

performance when frequency mismatch occurs as discussed in 

[12]. 

The eigenvalue-based method compares the eigenvalues of the 

signal's covariance matrix to find primary users in different 

spectrums. The changes in eigenvalues are calculated based 

on the statistical characteristics and doesn’t require any prior 

knowledge of the PU. The problem rises in dynamic and noisy 

environments, and the dependence on the accuracy of the 

estimated covariance matrix [13]. 

Based on the above discussion, the proposed algorithm must 

be able handle frequency mismatch, uncertainties in noise and 

maintain computational simplicity. Moreover, it should also 

have resilience against fluctuations in the channel in order to 

achieve accuracy in classification. To achieve these goals, a 

signal processing perspective is adopted. In doing so, a 

balance between performance and practical implementation, 

ensuring the viability of the proposed scheme in real-world 

scenarios is achieved. 

This approach boasts low cost and enhanced accuracy, 

enabling the accurate classification of PU signal and noise. 

The work is subsequently implemented using MATLAB, and 

the obtained results are thoroughly analyzed and compared 

with methodologies employed in prior studies. 

3. METHODOLOGY 

The Average Slope Detection methodology focuses on the 

statistical properties of the signal that is robust under the 

uncertainties caused by noise and frequency mismatches. 

The work is further optimized by utilizing Cooperative 

Spectrum Sensing (CSS) which involves leveraging 

observations or data from multiple CR users to enhance 

sensing performance. A Cooperative Spectrum Sensing 

network is shown in Fig. 2. 
 

Fig. 2 Cooperative Spectrum Sensing 

This approach includes multiple users aimed at reducing false 

alarms, minimizing missed detections, and achieving a 

quicker detection time. The integration of multiple sensors not 

only enhances detector performance but also introduces built- 

in redundancy, thereby enhancing reliability and robustness. 

However, a trade-off exists, as an increase in the number of 

cooperating sensing nodes leads to higher overhead traffic and 

greater system resource requirements for fusing the sensing 

results [14]. Keeping this in consideration a limited number of 

SU’s are only considered. 
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In this framework, the Probability Density (PD) is very 

crucial. From the PD, its distribution (PDD) is calculated that 

is independent of noise uncertainties. The favourable 

characteristics of PD provide a promising avenue for robust 

spectrum sensing [15]. 

 

Fig. 3 Methodology Proposed – Average Slope Detection 

To extract essential signal features, the ASD approach is 

actively employed. These extracted features form fundamental 

inputs for Machine Learning (ML) models that classify PU 

signals from noise. 

The reasoning for integrating machine learning algorithms in 

this context stems from the extensive repository of past 

wireless data. This data holds significant features and 

fluctuation trends within the radio environment. This 

information is leveraged for tasks such as parameter 

configuration and performance enhancement. This integrated 

approach aims to heighten the accuracy of PU classification, 

enhances the spectrum sensing framework [16]. 

The block diagram in Fig. 3 briefs the methodology proposed 

by this work. 

 

3.1 System Model 

The state 𝐻0 occurs when the SU receives only noise and the 

PU is not utilizing the spectrum. The state 𝐻1 occurs when the 

PU is actively utilizing the spectrum. The carrier frequency 

and sampling frequency is denoted by 𝑓𝑐 and 𝑓𝑠 respectively. 

The Additive White Gaussian noise (AWGN) given by u(n) is 

the noise in the received signal when the spectrum is 

unutilized. The received signals of each SU are denoted by 

𝑦𝑖(𝑛), with 𝑛 = 1,2,3, … 𝑁, where N represents the total 

 

 

number of samples and i denotes the user. The instantaneous 

amplitude and phase of the PU as received by ith user is 

denoted by 𝑔𝑃𝑈 𝑖(𝑛) and ∅𝑖(𝑛) respectively. 

 

3.2 Average Slope Detection 

 

The concept of Phase Difference Distribution and the 

derivation of the approximate PD distribution within an 

AWGN channel is discussed. Subsequently, the Average 

Slope Detection (ASD) technique is derived. 

a. Phase Difference Distribution Calculation 

The employed methodology is based on extracting features 

from the PD distribution. The ASD algorithm is applied to 

unveil patterns based on the shape features of the PD 

distribution. These algorithms provide a comprehensive 

analysis of the intricate information in phase differences, 

emphasizing both shape and algebraic attributes helping in the 

classification of received signals according to the hypothesis. 

Phase Difference of the signal [18] is defined as Equation (3) 

and Equation (4) as shown below. 

The system model for spectrum sensing [17] is introduced by 

the following binary hypothesis shown in Equation (1) and 

Equation (2), 

 

𝜑𝑛 

𝐼𝑚(𝑦(𝑛)) 
= arctan 

𝑅𝑒(𝑦(𝑛)) 

 
(3) 

𝐻0 ∶ 𝑦𝑖(𝑛) = 𝑢𝑛 (1) 

 
2𝜋𝑓𝑐 𝐻 : 𝑦 (𝑛) = 𝑔 (𝑛) × exp [𝑗 ( 𝑛 + ∅ (𝑛))] + 𝑢(𝑛) 

 

𝜃𝑛 = (𝜑𝑛+1 − 𝜑𝑛) 𝑚𝑜𝑑 2𝜋 (4) 

The imaginary and real parts of 𝑦(𝑛) are denoted by 

𝐼𝑚(𝑦(𝑛)) and 𝑅𝑒(𝑦(𝑛)). The phase of the received signal is 

denoted by 𝜑 [19]. 1 𝑖 𝑃𝑈 𝑖 𝑓𝑠 
𝑖 

(2) 

𝑛 

1 
𝑓 (𝜃 ) = 

 
(5) 

𝑛𝑜𝑖  𝑛 
 

2𝜋 

1 
 

𝛾 𝛾2 
𝑓𝑠𝑖𝑔𝑎(𝜃𝑛) = 

2𝜋 
+ (

4 
− 

8 
) (6) 
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𝛿2 (𝑥′′, 𝑦′′) 

The PDF of the gaussian noise PD distribution is given by 

Equation (5) and the and that of the modulated signal under 

AWGN is given by Equation (6) with 𝜂 = 𝜃0 − 𝜃𝑛. 

k, |𝑆𝑥| = 𝑘 . Further only the points in D will be considered 

and not those in 𝑆𝑥. This ensures that the selected neighbors 

are distinct from the point 𝑆𝑥 itself. 

Here, 𝛾 = 
𝑃 

𝑛 
is the instantaneous SNR [19]. And 𝜃0 = 

2𝜋𝑓𝑐 

𝑓𝑠 
𝑑𝑖𝑠𝑡 (𝑥, 𝑥′) ≥ 

𝑚𝑎𝑥 
𝑑𝑖𝑠𝑡(𝑥, 𝑥′′) (10) 

denotes the PD between 𝑦(𝑛) and 𝑦(𝑛 + 1) [15]. 

b. Slope Detection 

The mathematical model reveals that the PD distribution of a 

noise signal remains constant, while for the modulated signal, 

it takes the form of a cosine wave that varies with the sampling 

frequency. Consequently, the PDF serves as a valuable tool 

for detecting the presence PU signals and white space. To 

achieve this, the ASD algorithm is implemented to calculate 

the average slope. This average slope then functions as a 

feature, aiding in the detection of the shape of the signal or 

noise within the channel. Fig. 4 represents the presence of PU 

under AWGN. Here, point M represents the maximum value 

of PDF, A represents the value of PDF at 0 and B represents 

the value of PDF at 2π. 

Fig. 4 PDF vs Phase Difference 

The following Equations (7 - 9) are used to calculate the ASD 

for PDF which is used as a feature to classify the presence of 

PU and white space. 

|𝑡𝑎𝑛𝑠  | + |𝑡𝑎𝑛𝑠  | 

 

 

For any point outside the set of k-nearest neighbours 𝑆𝑥, the 

distance from that point to the given point 𝑆𝑥 is at least as large 

as the distance from 𝑆𝑥 to the furthest point within 𝑆𝑥. This 

ensures that the k-nearest neighbours are indeed the closest 

points to 𝑆𝑥 in the dataset, maintaining a clear and consistent 

definition of proximity for classification between noise and 
PU signal. 

𝑇𝑠 = 
 𝐴𝑀 𝐵𝑀  

2 
(7) 

4. IMPLEMENTATION RESULTS 

𝑡𝑎𝑛𝑠  = 
𝑓𝑠𝑖𝑔(𝑥𝑀) − 𝑓𝑠𝑖𝑔(0)  

(8) This section highlights the outcomes of simulations and 
𝐴𝑀 𝑥𝑀 approximations concerning PD distributions of PU signal and 

noise, as seen in Fig. 5 and Fig. 6 respectively. The alignment 

𝑡𝑎𝑛𝑠 = 
𝑓𝑠𝑖𝑔(𝑥𝑀) − 𝑓𝑠𝑖𝑔(2𝜋) (9) between simulation results and approximations validates the 

𝐵𝑀 
𝑥𝑀 − 2𝜋 accuracy of our derivations. Notably, these distributions 

𝑇𝑠 represents average slope of the PD distribution. From 

Equation (8) and Equation (9), the slope of line AM and BM, 

in Fig. 5, is calculated. 

 

3.3 Cooperative Spectrum Sensing 

 

In a cooperative spectrum sensing network, multiple users 

concurrently sense the spectrum [20]. Each SU individually 

performs spectrum sensing using the ASD algorithm. The 

resulting PDD from each user is transmitted to the fusion 

center, where the data are aggregated and recorded, forming a 

dataset. Subsequently, a suitable Machine Learning algorithm 

is chosen and trained using this dataset. When real-time data 

is received, the fusion center applies the trained ML algorithm 

to classify signals as either noise or PU signals. 

 

3.4 Machine Learning Algorithm 

 

In the context of Machine Learning Algorithm the KNN – 

classification is applied. A set of k nearest neighbors for a 

given point 𝑥 is given as 𝑆𝑥 [21]. The set of points is 

considered as a subset of the, 𝑆𝑥 ⊆ 𝐷. It was already stated 

there will k neighbors therefore, the cardinality of 𝑆𝑥 will be 

exhibit distinct shapes: 𝑓𝑠𝑖𝑔𝑟 (𝜃) resembles a cosine wave, 

varying with sampling frequency while 𝑓𝑛𝑜𝑖(𝜃𝑛) maintains a 

consistent straight-line shape. 

Even in scenarios with low SNRs, these shape differences 

persist, indicating distinguishable characteristics between 

𝑓𝑠𝑖𝑔𝑟 (𝜃) and 𝑓𝑛𝑜𝑖(𝜃𝑛). This highlights how identifying the 

Phase Difference Distributions' forms will remain essential for 

identifying the Primary User's (PU) signal. Consequently, 

spectrum sensing becomes a classification problem where a 

straight line and a cosine curve are differentiated. 
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Fig. 5 PD distribution of PU under AWGN channel with SNR 

= 0 dB 

 

 

 

 

 

 

 

 

 

 

 

 

Model KNN SVM 

Accuracy (Validation) 85.8% 72.5% 

Total Cost (Validation) 9561 18473 

Prediction Speed ~87000 obs/sec ~41000 obs/sec 

Training Time 120 2678.5 sec 

Model Size (Compact) ~5 MB ~16 kB 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 PD distribution of AWGN channel 

The Probability of Detection (Pd) versus Signal-to-Noise 

Ratio (SNR) graph, utilized to assess the algorithm's 

performance across different SNR conditions is shown in Fig. 

accuracy of the KNN algorithm is observed to be 85.8% 

essentially out performing the SVM algorithm by 18.34%. 

Fig. 7 Performance Analysis of ASD algorithm (Pd vs SNR) 

The Pd vs Pf curves in Fig. 8 illustrate that under conditions 

of noise uncertainty and carrier frequency mismatch, KNN 

algorithm exhibits better performance when compared to 

SVM algorithm, as evidenced by its ROC curve. This suggests 

that SVM struggles to effectively discern the presence or 

absence of the Primary User's signal. 

 

 

Fig. 8 Performance Analysis of ASD algorithm (Pd vs Pf) 

From Table 1 we can observe that, The KNN algorithm 

achieves an accuracy of 85.8%, significantly outperforming 

the SVM algorithm by 18.34%. Other performance metrics are 

also compared in Table 1. 

Table. 1 Comparison of ML Classification Results 

 

In Section 2, a comprehensive discussion was provided on 

why this approach is favored over conventional spectrum 

sensing techniques. The proposed methodology has been 
 

 
evaluated against the approaches outlined in [10], [11], and 

[12], demonstrating notable advancements. Table 2 highlights 

the significant improvements in Probability of Detection at 

low SNR conditions achieved with the proposed method, 

underscoring its effectiveness compared to existing solutions. 

Table. 2 Comparing Pd with existing methodologies 

7. In comparison to the traditional Energy Detection   

algorithm, which is known for its computational simplicity, 

ASD algorithm demonstrates superior accuracy despite its 

higher computational complexity. This indicates that while the 

ASD algorithm may be more computationally intensive, it 

offers enhanced performance, as evidenced by the higher Pd 

values across various SNR levels. 

The Cooperative Spectrum Sensing network is simulated in 

MATLAB by assuming 5 SU’s which are at different 

distances from the PU. There will be different energy levels 

recorded by each user but the total noise floor of the network 

will be constant making the SNR of each user different. The 

location of the of the PU and SU’s are assumed to be fixed 

with a noise floor of -20 dB. The ASD algorithm is applied at 

each SU and their PDD value is sent to the fusion centre. The 

Spectrum Sensing 

Scheme 

SNR Pd 

Energy Detection [10] -10 dB ~ 0.55 

Matched filter [11] -15 dB ~ 0.5 

Cyclostationary [12] -15 dB ~ 0.6 

Average Slope 

Detection 

-15 dB 0.9788 
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5. CONCLUSION 

The application of the ASD algorithm in Cooperative 

Spectrum Sensing facilitates a distinct differentiation between 

noise and PU signal. Unlike the commonly utilized energy- 

based detection technique, which exhibits subpar performance 

in low SNR scenarios, ASD, particularly when integrated with 

PDD, emerges as a superior method for spectrum sensing. 

Furthermore, the training of the KNN algorithm enables the 

effective classification of PU and noise signals. 

The future scope of this paper lies in exploring the different 

attacks that faced by the cognitive radio and how the ASD 

algorithm can perform under that condition. 
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