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1. INTRODUCTION 

Neural networks (NNs) play an essential role in artificial 

intelligence (AI) and machine learning (ML). They can solve 

complex tasks like regression, classification, pattern 

recognition, and decision-making efficiently. The working of 

the neural network is inspired by the human brain for efficient 

information processing. [1]. In these networks, the inputs 

received by the neurons is calculated and the output is sent to 

the next layer. These networks learn from the inputs provided 

to them and give a desired prediction all thanks to its structure. 

A neural network consists of mainly three layers: input layer, 

hidden layer, and an output layer. [2]. The input layer receives 

the initial data set and sends it to be hidden layer where it 

analyzes the data by finding pertinent patterns, finally it is sent 

to the output layer to generate the result like a classification or 

prediction. [3]. As compared to other algorithms neural 

networks are preferred because they can learn nonlinear 

relationship between inputs and outputs thus achieving a 

higher accuracy. [4]. FFNN is the simplest form of neural 

network which transmits data only in a forward direction 

without any feedback. Their user-friendliness and effectiveness 

lead to its frequent usage in fields like image recognition, 

natural language processing, identification, and control. [5]. 

However, this simplicity limits the FFNN's ability to handle 

sequential data or time dependent patterns. [6]. FFNNs are 

frequently trained using the back propagation  
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technique, which optimizes the network's weights by 

minimizing the error between expected and actual outputs. 

The training process may become more computationally 

demanding as the network gets bigger, and there is a greater 

chance of over-fitting, in which the model performs poorly on 

unknown data because it is too particular to the training set [7]. 

In order to overcome these difficulties, optimization techniques 

like pruning approaches have been developed. Their goal is to 

simplify neural networks by removing unnecessary or 

redundant neurons and connections without appreciably 

compromising performance. Pruning reduces the 

computational resources required for training and inference 

while simultaneously improving the model's capacity for 

generalization [8]. Pruning techniques can be categorized into 

several groups: significance-based methods, mutual 

information (MI)-based methods, magnitude-based methods, 

cross-validation methods, evolutionary algorithms, sensitivity 

analysis (SA) methods, and penalty term approaches [9].  In 

order to create neural network models that are more effective 

and efficient, pruning methods have become a crucial element 

of contemporary deep learning. Neural networks now perform 

noticeably better on a variety of tasks, including system 

identification, thanks to recent 

Developments in deep learning [10]. Building on these 

developments, pruning methods have been investigated to 

enhance neural networks' effectiveness and performance even 

further. To lower the computational cost and increase the 

effectiveness of neural networks, some pruning strategies have 

been investigated, for example, dynamic network surgery and 
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𝑖=1 

sparsity-inducing regularization [11-17]. The outline of the 

paper is as follows II describes the problem statement; section 

III describes the structure and details of the FFNN. The 

learning algorithm and weight update rules are also covered in 

this section, In Section IV, the simulation results are presented. 

Finally, Section V discusses the conclusions drawn from this 

study and outlines potential directions for future research. 

2. PROBLEM STATEMENT 

Let the input vector R (k) = [r (k), r (k-1), …, r (k-m)] and 

output vector 𝑌𝑝𝑝(𝑘) = [𝑦𝑝𝑝(𝑘), 𝑦𝑝𝑝 (𝑘 − 1), …, 𝑦𝑝𝑝 (𝑘 − 

𝑛)] of a non-linear plant. The differential equation of the plant 

at the 𝑘𝑡ℎ instant is: 

 

𝑦𝑝𝑝 (𝑘) = [𝑅(𝑘), 𝑌𝑝𝑝(𝑘)] (1) 

 
When PFFNN is considered as an identifier, the identifier 

structure is: 

 

𝑦𝑝𝑓𝑓𝑛n (𝑘) = 𝑓  [𝑦𝑝𝑝 (𝑘 − 17), 𝑦𝑝(𝑘)] (2) 

 
Here, f represents the nonlinear mapping function. The current 

output 𝑦𝑝(𝑘) relies on both the current and previous values of 

the plant as well as external input. m, n denotes the order of the 

plant respectively. The objective is to optimize the FFNN 

models using pruning algorithm to approximate the nonlinear 

function 𝑓 ˆ≅𝑓 while minimizing the output error between the 

actual system response 𝑦𝑝𝑝 (𝑘) and the predicted response 

𝑦𝑝𝑓𝑓𝑛(𝑘). This is formalized as: 

 

| 𝑦𝑝𝑝 (𝑘) − 𝑦𝑝𝑓𝑓𝑛(𝑘)| ≤∈ (3) 

 
The classic back propagation (BP) technique with an adaptive 

learning rate is used to repeatedly update the trainable network 

weights as ϵ→0 to satisfy the criterion given in Eq. (1). 

 

3. FEEDFORWARD NEURAL NETWORK 

(FFNN) 

 The FFNN is a forward propagating structure that sends 

information from input to output layer. The functions of the 

layer are as follows: 

 

        Figure 1 Feed forward network structure 

 

        

 

         Input Layer: 

The input layer obtains both the past and present values of the 

external input and plant output. In this work, we have 

considered two inputs as y (k−17), and y (k). This layer 

receives these values as input and forwards it to the next layer. 

  Hidden layer: 

This layer receives the inputs from the input layer and process 

the input. We have considered a single hidden layer in our 

work. The input signals are multiplied with input weight 

vector Wi (k) and sent to the output layer. In this layer, a 

nonlinear activation function. 

 Output layer: 

Using linear activation function this layer generates the final 

output of the network which is denoted as 𝑦𝑝𝑓𝑓𝑛𝑛 (𝑘). 

 
 

4. LEARNING ALGORITHM 

 
The network’s output is given as: 

 

𝑦𝑝𝑓𝑓𝑛𝑛(𝑘) =  𝑓(∑𝑖=1
𝑚   𝐻𝑗(𝑘)𝑤𝑜(𝑘) + 𝑏𝑜ℎ(𝑘)𝑤𝑏ℎ(𝑘)            (4) 

 

where wo(k) is the output weight of FFNN, wbh(k) is the 

output bias weight and boℎ(k) is the output bias vector. The 

linear activation function used is denoted by f. 

The output of hidden layer for the network at kth instant is 

computed as: 

 

𝐻𝑗(𝑘) =  𝑓1(∑𝑗=1
𝑛   𝑋(𝑘 − 𝑗)𝑤𝑖(𝑘) + 𝑏1(𝑘)𝑤1(𝑘))               (5) 

 

where wi(k) is the input weight, b1(k) denotes the associated 

input bias vector with f1 is the nonlinear activation function of 

the FFNN network. 

A gradient descent-based back propagation algorithm is used 

to optimize the tunable parameters of a feed-forward neural 

network (FFNN). The Mean Squared Error is used as the cost 

function in this process, which can be expressed as: 

 

𝐸(𝑘) =
1

2
[𝑦𝑝𝑝(𝑘) − 𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)]

2
                            (6) 

 

Here, e (k) = ypp (k) − ypffnn (k) denotes the identification 

error. 

To propagate errors from output layer back to hidden layer the 

chain rule is used which adjusts the weights in the output layer 

during training process. 

               
𝜕𝐸(𝑘)

𝜕𝑤𝑜(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)
×

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)

𝜕𝑤𝑜(𝑘)
                  (7) 

Additionally, the output weights wo (k) are updated using 

Stochastic Gradient Descent (SGD) as follows:                                   

𝑤𝑜(𝑘 + 1) = 𝑤𝑜(𝑘) + 𝜂𝑒(𝑘)𝐻𝑗(𝑘)              (8) 

where Hj(k) indicates the induced fields of PFFNN. Here, η 
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denotes the learning rate, typically set within a range of 0 to 1. 

By propagating the error backward all the way to the input 

layer, the weights wi (k) between the input layer and the hidden 

layer can be adjusted [19]. 

 

 
𝜕𝐸(𝑘)

𝜕𝑤𝑖(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)
×

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)

𝜕𝑅𝑗(𝑘)
×

𝜕𝑅𝑗(𝑘)

𝜕𝑤𝑖(𝑘)
                  (9)        

The new weights are updated using the SGD as: 

 𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) − 𝜂𝑒(𝑘)
𝜕𝐸(𝑘)

𝜕𝑤𝑖(𝑘)
            (10) 

 

5. PROPOSED PRUNING ALGORITHM 

 
In this work, the FFNN structure is optimized using a pruning 

scheme with adaptive learning rate. Figure 2 shows the pruning 

algorithm scheme. The detailed procedure is as described 

below: 

 

 
Figure 2    Proposed pruning algorithm scheme 

 

Step 1: Build the FFNN architecture and set up all the settings, 

including the network's learning rate, weights, and biases. The 

number of outputs in the network is equal to the number of 

predictions, and the number of input neurons is equal to the 

number of observations. In the hidden neurons, the maximum 

number of neurons is set to 50. 

Step 2: Train and validate the network. Adjust learning rate if 

required by calculating the score Si (k) using eqn. no. 10. Store 

MSE, AMSE of the epoch. 

Step 3: Execute the pruning step by removing unnecessary 

weights of neurons from input, hidden and output layer with 

magnitudes below the threshold. 

Step 4: Validate the network after pruning procedure is 

executed. Obtain the predictions and plot the results. 

Step 5: Stop the execution after termination condition is met. 

When maximum iterations are reached, the network terminates 

in this work. 

Novel Adaptive learning rate: During training, the 

learning rate controls how much a neural network's weights are 

altered. Training will be sluggish or may not function at its best 

if the learning rate is too low, whereas convergence issues will 

arise if the learning rate is too high. Adaptive learning rate 

approaches were developed to address this issue by 

automatically modifying the learning rate throughout the 

training process in accordance with the gradient of the error 

function. In our approach, we introduced an adjustable learning 

rate by computing a score index Si (k). We have used the 

performance matrices to increase or decrease the learning rate 

of the next consecutive iteration based on previous 

performance. We have considered MSE and RMSE as the 

performance metrics. The calculation of the score index Si (k) is 

as below: 

𝑆𝑖(𝑘) = 𝑤1 ×𝑀𝑆𝐸(𝑘) + 𝑤2  × 𝑅𝑀𝑆𝐸(𝑘)                           (11) 

Where 𝑤1 and 𝑤2  are the weights based on their importance 

and they are made equal to 0.5 Based on the score index Si (k), 

the learning rate adapts as below: 

If Si (k) < Si (k− 1) then η (k+ 1) = η (k) (1 + α)  

(Or)  

     If Si (k) ≥ Si (k − 1) then η (k + 1) = η (k) (1 − α)     (12) 

 

 

6. SIMULATION RESULTS 

 
The simulation results of nonlinear plant using PFFNN 

algorithm with ALR is presented and discussed in this section. 

The initial number of hidden neurons is selected to be 50 for 

PFFNN algorithm with ALR, PFFNN algorithm with FLR and 

FFNN algorithm with FLR. The proposed algorithm is tested on 

the Mackey series prediction bench mark problem. A total of 

1500 samples are considered. 600 values are considered for 

testing and remaining 900 values for validation. 

A. Mackey glass series prediction 

The performance of the algorithm is tested on the following 

Mackey-glass series prediction problem given by [18] 

𝑦𝑝𝑝(𝑘) = −𝛽 × (𝑘) +  
𝛼 × 𝑦𝑝𝑝(𝑘 − 𝜏)

1 + 𝑦𝑝𝑝
10(𝑘 − 𝜏)

 

When series-parallel based identification is considered, the 

plant takes the following structure:  

𝑦𝑝𝑝(𝑘) = 𝑓[𝑦𝑝𝑝(𝑘 − 17), 𝑦𝑝𝑝(𝑘)]                                  (13) 

Now, if FFNN is considered as identifier, the identification 

structure will be: 

𝑦𝑓𝑓𝑛𝑛(𝑘) = 𝑓2[𝑦𝑝𝑝(𝑘 − 17), 𝑦𝑝(𝑘)                              (14) 

Here, 𝑓2 is the nonlinear mapping function.  

The Figure 3 illustrate that the proposed PFFNN with ALR 

effectively predicts the Mackey-Glass chaotic series. The 

analysis of Figures 3–4 clearly shows that the PFFNN with 

ALR provides accurate predictions. Additionally, to assess the 

model’s performance, a comparison was made with the PFFNN 

using FLR, with detailed results summarized in the table. The 

table 1 highlights the final count of hidden neurons, along with 
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the RMSE and MSE values. It is clear from Table 1 that the 

PFFNN with ALR uses fewer hidden neurons than its 

counterpart, the PFFNN with FLR. This example implies that 

the PFFNN with ALR algorithm has better prediction ability 

than some other existing algorithms. Further the proposed 

PFFNN is also compared with other proposed algorithms for 

pruning in literature. It is evident from table 2 that the proposed 

PFFNN is effective for identification of Mackey glass series. 

 

 

Figure 3   MSE obtained from PFFNN with ALR and PFFNN with FLR structures 

 

 
 

  

Figure 4   Response obtained from plant during final stages of 

training 

 

 

Table 1 Comparison of PFRNN with ALR with other selected 

structures 

 

 

Table 2.  Comparing our result with other algorithms 

 

7. CONCLUSION AND FUTURE WORK 

In this work, we have proposed a pruning algorithm with 

novel adaptive learning rate to optimize the FFNN 

structure for identification of nonlinear dynamic system. 

We have made learning rate dynamic by calculating a 

score index Si (k) which is based on the combination of 

importance of performance metrics. The efficiency of the 

proposed algorithm is demonstrated using a nonlinear 

benchmark Mackey series prediction problem. The results 

of PFFNN with ALR are compared with PFFNN with FLR 

and standard FFNN with ALR. The results show that the 

pruned FFNN with ALR structure outperforms the fixed 

structures with FLR. It also shows better prediction 

accuracy and MSE than fixed adaptive learning rate. To 

further improve the overall performance of the algorithm, 

BP can be combined with any other new optimization 

technique. Our future work would will focus on 

S. 

No. 

Structure

s 

Learning 

rate 

No of 

hidden 

neurons 

(before 

pruning

) 

No of 

hidden 

neurons

(after 

pruning

) 

MSE 

(before 

Pruning) 

MSE 

(after 

Pruning) 

1. PFFNN Adaptive 50 18 0.0015 0.0007 

2. PFFNN Fixed 50 21 0.0021 0.0018 

Parameter PFFNN Bilal Shoaiba.et.al 

[19] 

LuLu.et.al[20] 

    MSE     0.0007       0.20107       0.019710 
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developing a new optimization algorithm combined with 

BP method. 

 

 

     REFERENCES 
                 
1. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. 

Umar, and O. U. Linus, "Comprehensive Review of Artificial   

Neural  Network Application to Pattern Recognition, “IEEE 

Access, vol. 7, pp. 108512-108546, 2019. 

2. I. A. Basheer and M. Hajmeer, "Artificial neural networks: 

fundamentals, computing, design, and application," Journal of 

Microbiological Methods, vol. 43, no. 1, 1 pp. 3-31, Oct. 2000. 

3. McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the 

ideas immanent in nervous activity. Bulletin of Mathematical 

Biophysics, 5, 115-133. 

4. Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning 

representations by back- propagating errors. 

Nature,323(6088),533- 536 

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 

Learning. MIT Press. 

6. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural 

network. Neural Networks for Perception, 65-93. 

7. LeCun, Y., Denker, J.S., & Solla, S.A. (1990). Optimal brain 

damage. Advances in Neural Information Processing Systems, 2, 

598-605. 

8. Hassibi, B., & Stork, D.G. (1993). Second order derivatives for 

network pruning: Optimal brain surgeon. Advances in Neural 

Information Processing Systems, 5, 164-171. 

9. M. Gethsiyal Augasta1_, T. Kathirvalavakumar (2013) Pruning 

algorithms of neural networks - a comparative study, 2-3.  

10. Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both 

weights and connections for efficient neural network. Advances 

in Neural Information Processing Systems, 28, 1135-1143. 

11. Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). 

Pruning convolutional neural networks for resource-efficient 

inference. International Conference on Learning Representations. 

12. Zhang, T., Yeung, D.Y., & Xu, J. (2018).L1 -regularized neural 

network pruning with lagrangian optimization. IEEE Transactions 

on Neural Networks and Learning Systems, 29(10), 4996-5007. 

13. Blalock, D., Ortiz, J.J.G., Frankle, J., & Guttag, J. (2020). What is 

the state of neural network pruning? Proceedings of Machine 

Learning and Systems, 2, 129-146. 

14. Kingma, D.P., & Ba, J. (2015). Adam: A method for stochastic 

optimization. International Conference on Learning 

Representations. 

15. Zhu, M., & Gupta, S. (2017). To prune, or not to prune: 

Exploring the efficacy of pruning for model compression. arXiv 

preprint arXiv:1710.01878. 

16. Ioffe, S., & Szegedy, C. (2015). Batch normalization: 

Accelerating deep network training by reducing internal covariate 

shift. International Conference on Machine Learning, 37, 448-

456. 

17. Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis: 

Finding sparse, trainable neural networks. International 

Conference on Learning Representations. 

18. Ibrahim, Rasha Mahmoud “Sentiment Analysis of Arabic Tweets 

– Implicit Semantics. 

19. B. Shoaib, I. M. Qureshi, Shafqatullah, and Ihsanulhaq, 

"Adaptive step-size modified fractional least mean square 

algorithm for chaotic time series prediction," Chinese 1 Physics 

B, vol. 23, no. 4, p. 040501, 2014. 

20. Lu, L., Zhao, H., & Chen, B. (2017). Time series prediction using 

kernel adaptive filter with least mean absolute third loss function. 

Neural Processing Letters, 46(3), 903-918. 

 
 

AUTHORS: 
 

 

Shobana. R currently working as AP in 

GCET, greater Noida. She received her 

B.E degree from Anna University, 

Chennai and M.E degree in control and 

instrumentation from Anna University, 

Chennai. She is currently pursuing PhD 

from Delhi Technological University. 

Her areas of interest are Neural 

networks, modeling and control of 

nonlinear systems.  

E-mail: r.shobana@galgotiacollege.edu 

 

 

Aditya Sharma is a B.Tech student in the 

Electrical and Electronics Engineering 

(EEE) department at Galgotias College 

of Engineering and Technology (GCET). 

His area of interests is soft computing 

projects. 

 

 Pooja Rout is currently pursuing a 

Bachelor of Technology (B.Tech) degree 

in electrical and electronics engineering 

at Galgotias College of Engineering and 

Technology, Greater Noida. Her 

research interests center around the 

neural networks.  

E-mail id: - 
poojarout3408@gmail.com 

 

Anurag Chauhan is a B.Tech student in 

the Electrical and Electronics 

Engineering (EEE) department at 

Galgotias College of Engineering and 

Technology (GCET). His area of 

interests in control systems.   

 

 

Krishna Gupta is currently pursuing a 

Bachelor of Technology (BTech) degree 

in electrical and electronics engineering 

at Galgotias College of Engineering and 

Technology, Greater Noida. His research 

interests center around the ANN.  

 

 

 

 

 

 

 

 

mailto:r.shobana@galgotiacollege.edu
mailto:poojarout3408@gmail.com

