

 ISSN: 2584-0495 Vol. 3, Issue 1, pp. 1487-1491

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

Optimizing Feed forward Neural Networks for Nonlinear
Dynamic System Identification with Adaptive Learning rate and
Pruning algorithm

Shobana R, Aditya Sharma, Anurag Chauhan, Krishna Gupta and Pooja Rout

Cite as: Shobana, R., Sharma, A., Chauhan, A., Gupta, K., & Rout, P. (2025). Optimizing

Feed forward Neural Networks for Nonlinear Dynamic System Identification with Adaptive
Learning rate and Pruning algorithm. International Journal of Microsystems and IoT, 3(1),
1487–1491. https://doi.org/10.5281/zenodo.15472198

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 20 January 2025

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.15472198

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.15472198
https://doi.org/10.5281/zenodo.15472198
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1487

International Journal of Microsystems and IoT

Vol.3, Issue 1, pp.1487-1491; DOI: DOI: https://doi.org/10.5281/zenodo.15472198

Optimizing Feed forward Neural Networks for Nonlinear Dynamic

System Identification with Adaptive Learning rate and Pruning

algorithm
Shobana.R, Aditya Sharma, Anurag Chauhan, Krishna Gupta and Pooja Rout

Department of Electrical & Electronics Engineering, Galgotias College of Engineering & Technology, Greater Noida

KEYWORDS

FFNN, pruning algorithm, gradient
BP based ANN

1. INTRODUCTION

Neural networks (NNs) play an essential role in artificial

intelligence (AI) and machine learning (ML). They can solve

complex tasks like regression, classification, pattern

recognition, and decision-making efficiently. The working of

the neural network is inspired by the human brain for efficient

information processing. [1]. In these networks, the inputs

received by the neurons is calculated and the output is sent to

the next layer. These networks learn from the inputs provided

to them and give a desired prediction all thanks to its structure.

A neural network consists of mainly three layers: input layer,

hidden layer, and an output layer. [2]. The input layer receives

the initial data set and sends it to be hidden layer where it

analyzes the data by finding pertinent patterns, finally it is sent

to the output layer to generate the result like a classification or

prediction. [3]. As compared to other algorithms neural

networks are preferred because they can learn nonlinear

relationship between inputs and outputs thus achieving a

higher accuracy. [4]. FFNN is the simplest form of neural

network which transmits data only in a forward direction

without any feedback. Their user-friendliness and effectiveness

lead to its frequent usage in fields like image recognition,

natural language processing, identification, and control. [5].

However, this simplicity limits the FFNN's ability to handle

sequential data or time dependent patterns. [6]. FFNNs are

frequently trained using the back propagation

© 2025 The Author(s). Published by Indian Society for VLSI

Education, Ranchi, India

technique, which optimizes the network's weights by

minimizing the error between expected and actual outputs.

The training process may become more computationally

demanding as the network gets bigger, and there is a greater

chance of over-fitting, in which the model performs poorly on

unknown data because it is too particular to the training set [7].

In order to overcome these difficulties, optimization techniques

like pruning approaches have been developed. Their goal is to

simplify neural networks by removing unnecessary or

redundant neurons and connections without appreciably

compromising performance. Pruning reduces the

computational resources required for training and inference

while simultaneously improving the model's capacity for

generalization [8]. Pruning techniques can be categorized into

several groups: significance-based methods, mutual

information (MI)-based methods, magnitude-based methods,

cross-validation methods, evolutionary algorithms, sensitivity

analysis (SA) methods, and penalty term approaches [9]. In

order to create neural network models that are more effective

and efficient, pruning methods have become a crucial element

of contemporary deep learning. Neural networks now perform

noticeably better on a variety of tasks, including system

identification, thanks to recent

Developments in deep learning [10]. Building on these

developments, pruning methods have been investigated to

enhance neural networks' effectiveness and performance even

further. To lower the computational cost and increase the

effectiveness of neural networks, some pruning strategies have

been investigated, for example, dynamic network surgery and

ABSTRACT

For effective training and enhancing any ANN's capacity for generalization, structure
optimization is crucial. In this work, an effective a pruning strategy was created to identify
nonlinear dynamic systems by optimizing the feed forward neural network's structure. The
gradient-based back propagation technique is used to update the FFNN weights. A threshold
is set and the weights between the input, hidden and output layers below the threshold limit
are eliminated. A novel adaptive learning rate is created by calculating the score index Si
after each epoch thereby increasing the speed of the algorithm. A nonlinear benchmark
problem is used to demonstrate the effectiveness of the suggested algorithm. A comparative
study of the algorithm is also done with simple FFNN with ALR and PFFNN with ALR.

https://doi.org/10.5281/zenodo.15472198

1488

𝑖=1

sparsity-inducing regularization [11-17]. The outline of the

paper is as follows II describes the problem statement; section

III describes the structure and details of the FFNN. The

learning algorithm and weight update rules are also covered in

this section, In Section IV, the simulation results are presented.

Finally, Section V discusses the conclusions drawn from this

study and outlines potential directions for future research.

2. PROBLEM STATEMENT

Let the input vector R (k) = [r (k), r (k-1), …, r (k-m)] and

output vector 𝑌𝑝𝑝(𝑘) = [𝑦𝑝𝑝(𝑘), 𝑦𝑝𝑝 (𝑘 − 1), …, 𝑦𝑝𝑝 (𝑘 −

𝑛)] of a non-linear plant. The differential equation of the plant

at the 𝑘𝑡ℎ instant is:

𝑦𝑝𝑝 (𝑘) = [𝑅(𝑘), 𝑌𝑝𝑝(𝑘)] (1)

When PFFNN is considered as an identifier, the identifier

structure is:

𝑦𝑝𝑓𝑓𝑛n (𝑘) = 𝑓 [𝑦𝑝𝑝 (𝑘 − 17), 𝑦𝑝(𝑘)] (2)

Here, f represents the nonlinear mapping function. The current

output 𝑦𝑝(𝑘) relies on both the current and previous values of

the plant as well as external input. m, n denotes the order of the

plant respectively. The objective is to optimize the FFNN

models using pruning algorithm to approximate the nonlinear

function 𝑓 ˆ≅𝑓 while minimizing the output error between the

actual system response 𝑦𝑝𝑝 (𝑘) and the predicted response

𝑦𝑝𝑓𝑓𝑛(𝑘). This is formalized as:

| 𝑦𝑝𝑝 (𝑘) − 𝑦𝑝𝑓𝑓𝑛(𝑘)| ≤∈ (3)

The classic back propagation (BP) technique with an adaptive

learning rate is used to repeatedly update the trainable network

weights as ϵ→0 to satisfy the criterion given in Eq. (1).

3. FEEDFORWARD NEURAL NETWORK

(FFNN)

 The FFNN is a forward propagating structure that sends

information from input to output layer. The functions of the

layer are as follows:

 Figure 1 Feed forward network structure

 Input Layer:

The input layer obtains both the past and present values of the

external input and plant output. In this work, we have

considered two inputs as y (k−17), and y (k). This layer

receives these values as input and forwards it to the next layer.

 Hidden layer:

This layer receives the inputs from the input layer and process

the input. We have considered a single hidden layer in our

work. The input signals are multiplied with input weight

vector Wi (k) and sent to the output layer. In this layer, a

nonlinear activation function.

 Output layer:

Using linear activation function this layer generates the final

output of the network which is denoted as 𝑦𝑝𝑓𝑓𝑛𝑛 (𝑘).

4. LEARNING ALGORITHM

The network’s output is given as:

𝑦𝑝𝑓𝑓𝑛𝑛(𝑘) = 𝑓(∑𝑖=1
𝑚   𝐻𝑗(𝑘)𝑤𝑜(𝑘) + 𝑏𝑜ℎ(𝑘)𝑤𝑏ℎ(𝑘) (4)

where wo(k) is the output weight of FFNN, wbh(k) is the

output bias weight and boℎ(k) is the output bias vector. The

linear activation function used is denoted by f.

The output of hidden layer for the network at kth instant is

computed as:

𝐻𝑗(𝑘) = 𝑓1(∑𝑗=1
𝑛   𝑋(𝑘 − 𝑗)𝑤𝑖(𝑘) + 𝑏1(𝑘)𝑤1(𝑘)) (5)

where wi(k) is the input weight, b1(k) denotes the associated

input bias vector with f1 is the nonlinear activation function of

the FFNN network.

A gradient descent-based back propagation algorithm is used

to optimize the tunable parameters of a feed-forward neural

network (FFNN). The Mean Squared Error is used as the cost

function in this process, which can be expressed as:

𝐸(𝑘) =
1

2
[𝑦𝑝𝑝(𝑘) − 𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)]

2
 (6)

Here, e (k) = ypp (k) − ypffnn (k) denotes the identification

error.

To propagate errors from output layer back to hidden layer the

chain rule is used which adjusts the weights in the output layer

during training process.

𝜕𝐸(𝑘)

𝜕𝑤𝑜(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)
×

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)

𝜕𝑤𝑜(𝑘)
 (7)

Additionally, the output weights wo (k) are updated using

Stochastic Gradient Descent (SGD) as follows:

𝑤𝑜(𝑘 + 1) = 𝑤𝑜(𝑘) + 𝜂𝑒(𝑘)𝐻𝑗(𝑘) (8)

where Hj(k) indicates the induced fields of PFFNN. Here, η

1489

denotes the learning rate, typically set within a range of 0 to 1.

By propagating the error backward all the way to the input

layer, the weights wi (k) between the input layer and the hidden

layer can be adjusted [19].

𝜕𝐸(𝑘)

𝜕𝑤𝑖(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)
×

𝜕𝑦𝑝𝑓𝑓𝑛𝑛(𝑘)

𝜕𝑅𝑗(𝑘)
×

𝜕𝑅𝑗(𝑘)

𝜕𝑤𝑖(𝑘)
 (9)

The new weights are updated using the SGD as:

 𝑤𝑖(𝑘 + 1) = 𝑤𝑖(𝑘) − 𝜂𝑒(𝑘)
𝜕𝐸(𝑘)

𝜕𝑤𝑖(𝑘)
 (10)

5. PROPOSED PRUNING ALGORITHM

In this work, the FFNN structure is optimized using a pruning

scheme with adaptive learning rate. Figure 2 shows the pruning

algorithm scheme. The detailed procedure is as described

below:

Figure 2 Proposed pruning algorithm scheme

Step 1: Build the FFNN architecture and set up all the settings,

including the network's learning rate, weights, and biases. The

number of outputs in the network is equal to the number of

predictions, and the number of input neurons is equal to the

number of observations. In the hidden neurons, the maximum

number of neurons is set to 50.

Step 2: Train and validate the network. Adjust learning rate if

required by calculating the score Si (k) using eqn. no. 10. Store

MSE, AMSE of the epoch.

Step 3: Execute the pruning step by removing unnecessary

weights of neurons from input, hidden and output layer with

magnitudes below the threshold.

Step 4: Validate the network after pruning procedure is

executed. Obtain the predictions and plot the results.

Step 5: Stop the execution after termination condition is met.

When maximum iterations are reached, the network terminates

in this work.

Novel Adaptive learning rate: During training, the

learning rate controls how much a neural network's weights are

altered. Training will be sluggish or may not function at its best

if the learning rate is too low, whereas convergence issues will

arise if the learning rate is too high. Adaptive learning rate

approaches were developed to address this issue by

automatically modifying the learning rate throughout the

training process in accordance with the gradient of the error

function. In our approach, we introduced an adjustable learning

rate by computing a score index Si (k). We have used the

performance matrices to increase or decrease the learning rate

of the next consecutive iteration based on previous

performance. We have considered MSE and RMSE as the

performance metrics. The calculation of the score index Si (k) is

as below:

𝑆𝑖(𝑘) = 𝑤1 ×𝑀𝑆𝐸(𝑘) + 𝑤2 × 𝑅𝑀𝑆𝐸(𝑘) (11)

Where 𝑤1 and 𝑤2 are the weights based on their importance

and they are made equal to 0.5 Based on the score index Si (k),

the learning rate adapts as below:

If Si (k) < Si (k− 1) then η (k+ 1) = η (k) (1 + α)

(Or)

 If Si (k) ≥ Si (k − 1) then η (k + 1) = η (k) (1 − α) (12)

6. SIMULATION RESULTS

The simulation results of nonlinear plant using PFFNN

algorithm with ALR is presented and discussed in this section.

The initial number of hidden neurons is selected to be 50 for

PFFNN algorithm with ALR, PFFNN algorithm with FLR and

FFNN algorithm with FLR. The proposed algorithm is tested on

the Mackey series prediction bench mark problem. A total of

1500 samples are considered. 600 values are considered for

testing and remaining 900 values for validation.

A. Mackey glass series prediction

The performance of the algorithm is tested on the following

Mackey-glass series prediction problem given by [18]

𝑦𝑝𝑝(𝑘) = −𝛽 × (𝑘) +
𝛼 × 𝑦𝑝𝑝(𝑘 − 𝜏)

1 + 𝑦𝑝𝑝
10(𝑘 − 𝜏)

When series-parallel based identification is considered, the

plant takes the following structure:

𝑦𝑝𝑝(𝑘) = 𝑓[𝑦𝑝𝑝(𝑘 − 17), 𝑦𝑝𝑝(𝑘)] (13)

Now, if FFNN is considered as identifier, the identification

structure will be:

𝑦𝑓𝑓𝑛𝑛(𝑘) = 𝑓2[𝑦𝑝𝑝(𝑘 − 17), 𝑦𝑝(𝑘) (14)

Here, 𝑓2 is the nonlinear mapping function.

The Figure 3 illustrate that the proposed PFFNN with ALR

effectively predicts the Mackey-Glass chaotic series. The

analysis of Figures 3–4 clearly shows that the PFFNN with

ALR provides accurate predictions. Additionally, to assess the

model’s performance, a comparison was made with the PFFNN

using FLR, with detailed results summarized in the table. The

table 1 highlights the final count of hidden neurons, along with

1490

the RMSE and MSE values. It is clear from Table 1 that the

PFFNN with ALR uses fewer hidden neurons than its

counterpart, the PFFNN with FLR. This example implies that

the PFFNN with ALR algorithm has better prediction ability

than some other existing algorithms. Further the proposed

PFFNN is also compared with other proposed algorithms for

pruning in literature. It is evident from table 2 that the proposed

PFFNN is effective for identification of Mackey glass series.

Figure 3 MSE obtained from PFFNN with ALR and PFFNN with FLR structures

Figure 4 Response obtained from plant during final stages of

training

Table 1 Comparison of PFRNN with ALR with other selected

structures

Table 2. Comparing our result with other algorithms

7. CONCLUSION AND FUTURE WORK

In this work, we have proposed a pruning algorithm with

novel adaptive learning rate to optimize the FFNN

structure for identification of nonlinear dynamic system.

We have made learning rate dynamic by calculating a

score index Si (k) which is based on the combination of

importance of performance metrics. The efficiency of the

proposed algorithm is demonstrated using a nonlinear

benchmark Mackey series prediction problem. The results

of PFFNN with ALR are compared with PFFNN with FLR

and standard FFNN with ALR. The results show that the

pruned FFNN with ALR structure outperforms the fixed

structures with FLR. It also shows better prediction

accuracy and MSE than fixed adaptive learning rate. To

further improve the overall performance of the algorithm,

BP can be combined with any other new optimization

technique. Our future work would will focus on

S.

No.

Structure

s

Learning

rate

No of

hidden

neurons

(before

pruning

)

No of

hidden

neurons

(after

pruning

)

MSE

(before

Pruning)

MSE

(after

Pruning)

1. PFFNN Adaptive 50 18 0.0015 0.0007

2. PFFNN Fixed 50 21 0.0021 0.0018

Parameter PFFNN Bilal Shoaiba.et.al

[19]

LuLu.et.al[20]

 MSE 0.0007 0.20107 0.019710

1491

developing a new optimization algorithm combined with

BP method.

 REFERENCES

1. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M.

Umar, and O. U. Linus, "Comprehensive Review of Artificial

Neural Network Application to Pattern Recognition, “IEEE

Access, vol. 7, pp. 108512-108546, 2019.

2. I. A. Basheer and M. Hajmeer, "Artificial neural networks:

fundamentals, computing, design, and application," Journal of

Microbiological Methods, vol. 43, no. 1, 1 pp. 3-31, Oct. 2000.

3. McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the

ideas immanent in nervous activity. Bulletin of Mathematical

Biophysics, 5, 115-133.

4. Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning

representations by back- propagating errors.

Nature,323(6088),533- 536

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

Learning. MIT Press.

6. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural

network. Neural Networks for Perception, 65-93.

7. LeCun, Y., Denker, J.S., & Solla, S.A. (1990). Optimal brain

damage. Advances in Neural Information Processing Systems, 2,

598-605.

8. Hassibi, B., & Stork, D.G. (1993). Second order derivatives for

network pruning: Optimal brain surgeon. Advances in Neural

Information Processing Systems, 5, 164-171.

9. M. Gethsiyal Augasta1_, T. Kathirvalavakumar (2013) Pruning

algorithms of neural networks - a comparative study, 2-3.

10. Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both

weights and connections for efficient neural network. Advances

in Neural Information Processing Systems, 28, 1135-1143.

11. Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017).

Pruning convolutional neural networks for resource-efficient

inference. International Conference on Learning Representations.

12. Zhang, T., Yeung, D.Y., & Xu, J. (2018).L1 -regularized neural

network pruning with lagrangian optimization. IEEE Transactions

on Neural Networks and Learning Systems, 29(10), 4996-5007.

13. Blalock, D., Ortiz, J.J.G., Frankle, J., & Guttag, J. (2020). What is

the state of neural network pruning? Proceedings of Machine

Learning and Systems, 2, 129-146.

14. Kingma, D.P., & Ba, J. (2015). Adam: A method for stochastic

optimization. International Conference on Learning

Representations.

15. Zhu, M., & Gupta, S. (2017). To prune, or not to prune:

Exploring the efficacy of pruning for model compression. arXiv

preprint arXiv:1710.01878.

16. Ioffe, S., & Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate

shift. International Conference on Machine Learning, 37, 448-

456.

17. Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis:

Finding sparse, trainable neural networks. International

Conference on Learning Representations.

18. Ibrahim, Rasha Mahmoud “Sentiment Analysis of Arabic Tweets

– Implicit Semantics.

19. B. Shoaib, I. M. Qureshi, Shafqatullah, and Ihsanulhaq,

"Adaptive step-size modified fractional least mean square

algorithm for chaotic time series prediction," Chinese 1 Physics

B, vol. 23, no. 4, p. 040501, 2014.

20. Lu, L., Zhao, H., & Chen, B. (2017). Time series prediction using

kernel adaptive filter with least mean absolute third loss function.

Neural Processing Letters, 46(3), 903-918.

AUTHORS:

Shobana. R currently working as AP in

GCET, greater Noida. She received her

B.E degree from Anna University,

Chennai and M.E degree in control and

instrumentation from Anna University,

Chennai. She is currently pursuing PhD

from Delhi Technological University.

Her areas of interest are Neural

networks, modeling and control of

nonlinear systems.

E-mail: r.shobana@galgotiacollege.edu

Aditya Sharma is a B.Tech student in the

Electrical and Electronics Engineering

(EEE) department at Galgotias College

of Engineering and Technology (GCET).

His area of interests is soft computing

projects.

 Pooja Rout is currently pursuing a

Bachelor of Technology (B.Tech) degree

in electrical and electronics engineering

at Galgotias College of Engineering and

Technology, Greater Noida. Her

research interests center around the

neural networks.

E-mail id: -
poojarout3408@gmail.com

Anurag Chauhan is a B.Tech student in

the Electrical and Electronics

Engineering (EEE) department at

Galgotias College of Engineering and

Technology (GCET). His area of

interests in control systems.

Krishna Gupta is currently pursuing a

Bachelor of Technology (BTech) degree

in electrical and electronics engineering

at Galgotias College of Engineering and

Technology, Greater Noida. His research

interests center around the ANN.

mailto:r.shobana@galgotiacollege.edu
mailto:poojarout3408@gmail.com

