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1. INTRODUCTION 

Neural networks (NNs) are significantly valuable in 

artificial intelligence (AI) and machine learning (ML). 

They provide a robust approach for effectively 

addressing a range of intricate tasks such as regression, 

classification, pattern recognition, and decision-making. 

Neural Networks (NNs) are designed based on the 

human brain to provide an effective solution for data 

processing [7-10]. In these networks, a neuron takes in 

inputs, processes them, and transmits the output to the 

following layer. The structure allows the feed forward 

neural network to learn from the input and make 

predictions. Like all other neural networks, this also 

consists of three layers: the input layer, hidden layer, and 

output layer. The input layer handles the original data 

set, after which the hidden layer process that data , and 

ultimately the output layer generates the final result, 

such as a prediction or classification [1]. Neural 

networks perform better at various tasks than algorithms 

do. This is due to their ability to learn nonlinear 

connections between inputs and outputs, enabling them 

to attain high accuracy [2]-[13-16]. As the input nodes 

of a feed-forward neural network (FFNN) transmit data 

only in one direction without any  
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feedback, it represents the simplest form of neural 

network. FFNNs are often employed in areas such as 

identification, image recognition, natural language 

processing and control due to their ease of use and 

efficiency [3]. This also introduces constraints like, the 

incapacity to manage sequential data or patterns 

dependent on time [4]. FFNNs are often trained with the 

back propagation method, which adjusts the network's 

weights to reduce the discrepancy between the predicted 

and actual outputs [18]. The training process can 

become more resource-intensive as the network 

expands, increasing the chances of overfitting, in that 

case the model struggles with unfamiliar data due to 

being overly tailored to the training dataset [5]. To 

address these challenges, optimization methods such as 

pruning, growing and growing-pruning techniques are 

been developed. The aim is to optimize the neural 

networks by adding essential neurons or eliminating the 

duplicate or unnecessary neurons and connections 

without degrading the network’s performance. A 

constructive algorithm dynamically adds neurons to 

improve learning, allowing it to adapt to increasing 

complexity in nonlinear system identification. While, 

pruning lowers the computational resources needed for 

both training and inference while also enhancing the 
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model's ability to generalize better [6]-[7]. As alone 

constructive may lead to overfitting likewise, alone 

pruning can increase the chances of underfitting and 

increase the chances of failure in identifying or 

capturing complex patterns, it may also lead to not so 

accurate results. Recent advances in deep learning have 

significantly improved the performance of neural 

networks across various tasks, such as identification of 

systems [8]-[12]. When combined together, constructive 

and pruning techniques help maintain an ideal and 

optimal network size, preventing the excessive 

expansion that can happen with a purely constructive 

method and avoiding underfitting that could arise from 

solely aggressive pruning alone. This blend of growing 

and pruning enables the network to adaptively respond 

to the problem’s complexity, speeding up convergence, 

and guaranteeing effective resource use. By 

continuously expanding when necessary and contracting 

when feasible and required, the model stays both 

adaptable and computationally efficient, making it more 

effective than relying on either pruning or constructive 

alone.  

In this work, we have proposed an adaptive growing 

pruning algorithm by adaptively growing them based on 

MSE and prune unnecessary neurons based on variance. 

We have also implemented an adaptive learning rate 

based on variance of each neuron to obtain an optimized 

FFNN structure and further extended them for 

identification of nonlinear dynamic system. The 

structure of the paper is organized as follows: Section II 

outlines the problem statement, while Section III 

explains the framework and specifics of the FFNN. 

Section IV includes the learning algorithm. Section V 

includes the proposed growing pruning algorithm 

scheme. Section VI includes the simulation results 

obtained. Ultimately, Section VII addresses the 

conclusions derived from this study and highlights 

possible avenues for future research. 

 
 

2. PROBLEM STATEMENT 

 

Let the input vector R (k) = [r (k), r (k-1), …, r (k-m)] 

and output vector 𝑌𝑝𝑝(𝑘) = [𝑦𝑝𝑝(𝑘), 𝑦𝑝𝑝(𝑘 −

1), … , 𝑦𝑝𝑝(𝑘 − 𝑛)] of a non-linear plant. The 

differential equation of the plant at the 𝑘𝑡ℎ instant is: 

𝑦𝑝𝑝(𝑘) = 𝑓[𝑅(𝑘), 𝑌𝑝𝑝(𝑘), 𝑘]                           (1) 

 

When ADFNN is considered as an identifier, the 

identifier structure is: 

𝑦𝑎𝑑𝑓𝑛𝑛(𝑘) = 𝑓[𝑦𝑝𝑝(𝑘 − 17), 𝑟(𝑘)]         (2) 

 

Here, f represents the nonlinear mapping function.  The 

current output 𝑦𝑝𝑝(𝑘) relies on both the current and 

previous values of the plant as well as external input. m, 

n denotes the order of the plant respectively. The 

objective is to optimize the FFNN models using 

adaptive growing pruning algorithm to approximate the 

nonlinear function 𝑓 ≅̂𝑓 while minimizing the output 

error between the actual system response 𝑦𝑝𝑝(𝑘) and the 

predicted response 𝑦𝑎𝑑𝑓𝑛𝑛(𝑘).  This is formalized as: 

 

|𝑦𝑝𝑝 (𝑘) − 𝑦𝑎𝑑𝑓𝑛𝑛(𝑘)| ≤∈                (3) 

 

The classic back propagation (BP) technique with an 

adaptive learning rate is used to repeatedly update the 

trainable network weights as ϵ→0 in order to satisfy the 

criterion given in Eq. (1). 

 

 

3. FEEDFORWARD NEURAL 

NETWORK (FFNN) 

 

The FFNN is a forward propagating structure that sends 

information from input to output layer. The structure is 

as shown as in Figure 1. The functions of the layer are 

as below: 

 

 
Figure 1 Feed forward neural network 

 

Input Layer:  

This layer is composed of input signals. In this work, we 

have considered two inputs y(k-1) and r(k-1) . The input 

signals are then forwarded to the next layer by 

multiplying with the input  weight vector Wir (k). 
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Hidden layer: 

The received input layer signals are then processed 

further. In this work, a single hidden layer is considered 

with the sigmoid activation function. The signals are 

further sent to the output layer. 

 

Output layer: 

This is the final layer that produces the output. It 

receives input from hidden layer and is multiplied with 

weight vector Wo (k). Here purelin activation function 

is considered. The output of the network is denoted as 

yadfnn (k). 

 

 
 

4. LEARNING ALGORITHM 

 
The network’s output is given as:    

    

yadffnn(k) =  f(∑ Hdj(k)Wo(k) + boh(k)Whr(k))n
j=1     (4)  

Where, Hdj signifies the hidden layer vector, Wo is the 

weight vector of the hidden layer, boh is the output bias 

vector and Whr denotes the output bias vector.  

The output of hidden layer for the network at kth instant 

is computed as: 

 

𝐻𝑑𝑗(𝑘) =  𝑓1(∑ 𝑋(𝑘 − 𝑗)𝑊𝑖(𝑘) + 𝑏1(𝑘)𝑊1(𝑘)𝑛
𝑗=1   )          (5) 

Where, Wir signifies the input weight vector, Wi is the 

weight vector of the input layer, b1 is the input bias 

vector. 

The weights are updated through a gradient descent back 

propagation algorithm at every iteration. A cost function 

is defined at the beginning of the training and the 

training is carried out until the cost function is found to 

reach the minimum value. Here, Mean square error 

(MSE) is chosen as the cost function.  

Mathematically the cost function is given as: 

                  𝑀𝑆𝐸 = ∑ (𝑦
𝑝

−𝑁
𝑖=1 𝑦𝑎𝑑𝑓𝑛𝑛)2          (6) 

  

Using the chain rule, all the weights are updated at every 

iteration and the stochastic descent algorithm is applied 

to update the new weights using the formula: 

                           𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + 𝜂
𝜕𝐸

𝜕𝑊
                         (7) 

Where, 
∂E

∂W
 indicates the weight updating derivative of 

W and 𝜂 is the learning rate. It is kept close between 0 

and 1. 

 

 

 

5. PROPOSED GROWING PRUNING 

ALGORITHM SCHEME 

 
In this work we have proposed an adaptive growing 

pruning network to construct feed forward neural 

network. It is denoted as ADFNN. The proposed scheme 

is as shown in Figure 2. The detailed steps are as shown 

below: 

 

Step 1: The neural network is initialized with no hidden 

neurons or connections. Parameters like learning rate, 

initial weights, and biases are set. 

 

Step 2: Train feed forward neural network. 

After training, the performance of the ANN is evaluated 

by calculating the MSE, which measures the average 

squared difference between the predicted and actual 

values. The algorithm also calculates the variance of 

each neuron Var (Hdj) . Based on the variance, learning 

rate matrix is updated. Each neuron is provided with 

different learning rate based on its variance. It is 

calculated as below: 

 

𝜂𝑗
(𝑡+1) = 𝜂𝑗

𝑡𝛼  𝑖𝑓 Var (Hdj) > Var threshold  

                           𝜂𝑗
𝑡𝛽 𝑖𝑓 Var (Hdj) < Var threshold 

 

Step 3: The algorithm now checks MSE for two 

consecutive iterations. If the MSE is found to increase 

continuously, the algorithm enters the growing step. 

Here based on MSE, the neurons are added one by one 

in each iteration cycle. i.e. 

 

𝑀𝑆𝐸𝑡 > 𝑀𝑆𝐸𝑡−1 𝑎𝑛𝑑 𝑀𝑆𝐸𝑡−1 >  𝑀𝑆𝐸𝑡−2, then add 

neuron 

 

Step 4: After every growing step, there are chances that 

the network is growing unnecessarily large leading to 

over fitting. Hence now it enters the pruning loop. 

 

Step 5: In pruning loop, it eliminates the neuron based 

on variance. If activation variance is very low of any 

neuron compared to threshold, it prunes such neuron. 

 

Var(𝐻𝑑𝑗) =
1

𝑁
∑ (𝐻𝑑𝑗

𝑁
𝑖=1 − 𝐻𝑑𝑗)2̅̅ ̅̅ ̅̅ ̅   

 

Var(𝐻𝑑𝑗) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,   then prune neuron 

 

Step 6: The performance of the network is again 

validated. If network found to perform best, then it is 

considered as final network structure. 
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Step 7: The algorithm enters the final termination loop 

and ends. If the MSE has reached its minimum, the 

Average MSE (AMSE) and Root Mean Squared Error 

(RMSE) are calculated to evaluate the model's overall 

performance. 

 

 

 
 

 

Figure 2 Adaptive growing-pruning algorithm scheme 

 

 

 

6. SIMULATION RESULTS 

 
The simulation results of nonlinear plant using ADFNN 

algorithm with ALR is presented and discussed in this 

section. The proposed algorithm is tested on the 

Mackey-glass series prediction, considering it as a 

benchmark problem.  
Consider the following Mackey-glass series prediction 

problem given by [18]: 

 

𝑦𝑝𝑝(𝑘) = −𝛽 × (𝑘) +  
𝛼 × 𝑦𝑝𝑝(𝑘 − 𝜏)

1 + 𝑦𝑝𝑝
10(𝑘 − 𝜏)

 

 

The values of 𝛼= 0.2 and 𝛽 = 0.3. The simulation is 

carried for 700 epochs. The initial weights and biases 

are taken random. The initial learning rate is considered 

as 0.001. Figure 3 shows the validation plot of the 

performance of ADFNN with ALR, showing optimal 

number of hidden neurons required to predict the 

Mackey-glass series. Figure 4 shows the comparison 

between the prediction of ADFNN with and without 

ALR  for the given benchmark problem. Table 1 shows 

the tabular comparison between ADFNN with ALR to 

that of ADFNN without ALR. On analysis of the Figure 

3, Figure 4 and Table 1, it is clearly evident  that the 

ADFNN with ALR provides accurate prediction and is 

a better option for the identification of non-linear system 

as compared to ADFNN without ALR. Table 2 shows 

the comparison of RMSEs obtained by other algorithms 

to that of ADFNN. 

 

 

 

 

 

Table 1 Comparison of performance of adaptive and non-

adaptive ADFNN  

 

 

 

 

 

 

Table 2  Comparing our result with other algorithms 

 

 

 

 

S. 

No. 

Structures Learning 

rate 

No. of 

hidden 

neurons 

(after 

Growing-

Pruning) 

MSE  AMSE 

1. ADFNN Adaptive 18 0.0096 0.0100 

2. ADFNN Non-

Adaptive 

20 0.1004 0.0163 

Parameter ADFNN SORBF[19] ESRNN [20] 

    RMSE     0.00238       0.20107       0.019710 



1523 

 

 

 
Figure 3 MSE obtained from ADFNN with ALR at different number of neurons 

 

 

 

 

 

 
Figure 4 Comparison of response attained by ADFNN with ALR to that of without ALR 
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7. CONCLUSION AND FUTURE WORK 
In this work, we have proposed a growing pruning 

algorithm with adaptive learning rate based on variance 

to obtain an optimized FFNN structure for identification 

of nonlinear dynamic system. The efficiency of the 

proposed algorithm is demonstrated using a nonlinear 

benchmark Mackey-Glass series prediction problem. 

The results of ADFNN with ALR are compared with 

ADFNN without ALR. The results show that the 

ADFNN with ALR structure predicts the series more 

efficiently as compared to the one without ALR. Our 

future work would focus on developing a new 

optimization algorithm combined with growing-pruning 

method. 
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