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1. INTRODUCTION 

Point-of-care technology (POCT) enables quick clinical 

decision-making by providing actionable information at the 

point of care. POCT refers to the devices or services that are 

used to offer clinical decision support and give quick 

laboratory results in real-time. The outcome from POC 

devices was uploaded to laptops that were used across the 

hospital. With the aid of that information, laboratories could 

determine the quality of clinical data and diagnose diseases 

with better clinical decision-making [1,2]. Hence, in order to 

enhance the outcome in evaluating the potential of health care, 

a simple yet effective and scalable large data analysis system 

can be used. Artificial intelligence (AI) has been employed 

more frequently in diagnostics in recent years. AI may be 

easily included in POCT in clinical pathology to maintain the 

quality of big clinical data and to produce effective findings 

when interpreting diseases via automated diagnostic 

classifiers [3-5]. The most common reason for adult clinical 

visits in contemporary cultures is back pain, which is brought 

on by ailments including spondylolisthesis and spinal 

stenosis, incurring significant costs and reducing living 

quality and job performance [6]. Hence, it is necessary to 

diagnose spinal cord disorders from large clinical scanned 

images at an early stage with the point-of-care. 
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Machine learning (ML) and deep learning (DL) techniques are 

broadly used in the prediction and diagnosis of spinal cord 

disorders that include spinal oncology, spinal osteoarthritis, 

trauma, infections, degenerative diseases, and adult spinal 

deformity. Spinal osteoarthritis, Lumbar Spinal Stenosis 

(LSS) and spinal deformities are the leading cause of back 

pain [7,8]. Spinal osteoarthritis often known as non-

inflammatory or degenerative arthritis develops over time and 

usually affects the lower back in which inflammation and pain 

are caused by the gradual breakdown of the cartilage between 

the joints. Scoliosis is a three-dimensional deformation of the 

spine that affects a large portion of the population and is more 

common in women than in males. Because of this, it is 

considered catastrophic and should be diagnosed early to 

prevent major issues with the spinal intervertebral column. 

One of the main causes of ongoing lower back discomfort is 

LSS. This is a constriction of the lumbar spinal canal caused 

by swelling of the soft tissues or bone, which puts pressure on 

the spinal nerve roots. Patients will experience symptoms like 

neurogenic claudication, neuromuscular pain, and unusual leg 

pain. For predicting these spinal cord disorders with an early-

stage alert, ML and DL techniques process large clinical 

datasets containing spinal radiography images, computer 

tomography (CT) images and magnetic resonance imaging 

(MRI) images with effective segmentation and classification 

[9-11]. Segmentation of spinal cord images has been 
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previously done with the fuzzy c-means method (FCM) and 

other soft segmentation approaches. The quantification of disc 

degradation, computer-aided disease diagnosis, and 

computer-assisted spine surgery would all benefit from the 

correct segmentation of intervertebral discs [12,13]. However, 

none of these studies provided quantitative segmentation 

accuracy evaluation results. 

Automatic DL methods such as CNN, U-Net and 

DNN for spinal cord disorder detection on a large clinical CT, 

radiography and MRI images might notify the reporting 

radiologist and clinicians, enabling a speedy decision for 

confirmation and therapy planning of spinal cord disorders. 

By doing so, the need for medical resources would be lessened 

and earlier treatment might be given to prevent neurological 

impairment that is irreversible. Prior deep learning in spine 

CT, radiography and MRI has shown considerable potential, 

especially for the identification of lumbar spinal stenosis, 

deformity, and spinal osteoarthritis. Deep learning is still in 

its infancy when it comes to the identification and 

classification of spinal cord disorders on CT, radiography and 

MRI. It now focuses mostly on detection, bone segmentation, 

and metastatic load [14-16]. Although, the existing 

segmentation and detection approaches for spinal cord 

disorder prediction fail to produce a high detection rate and 

dice coefficient with erroneous labelling and localization of 

spinal cord components. Also, they failed to determine more 

than one spinal cord disorder at a time due to the processing 

of limited clinical data and unique characteristics related to 

diverse disorders are not extracted. Hence there is a need to 

propose a novel AI-based point-of-care diagnosis model to 

effectively detect various spinal cord disorders by processing 

large clinical data images. 

 

2. LITERATURE SURVEY 
 

Al-kafri et al [17] described a method for semantic segmentation 

and MRI determination of the lumbar spine using deep learning 

to assist doctors in detecting stenosis of the lumbar spine. MRI 

scans from 515 patients with symptomatic back pain are 

included in this dataset. Expert radiologists make annotations on 

each study describing the lumbar spine's observed 

characteristics and state. Also, created an evidence truth dataset 

with labels for four key lumbar spine areas, which 

  

was utilized as training and test pictures for segmentation 

classification algorithms. Based on the Jaccard index, two new 

metrics have been developed to assess the quality of the 

evidence dataset: validity and consistency. Using SegNet, tried 

out semantic segmentation. However, the mean accuracy in 

segmentation is consistently lower in the unregistered class. 

Mushtaq et al [18] discuss the localization and segmentation of 

the lumbar spine, which aid in the analysis of lumbar spine 

abnormalities. YOLOv5, the YOLO family fifth variation, is 

used to locate the lumber spine. Then, linked the angles with the 

region size calculated from the YOLOv5 centroids to identify 

the lumbar lordosis and achieved a 74.5% accuracy. Acquisition 

of segmented vertebrae and ribs, cropped images from YOLOv5 

bounding boxes are sent through HED U-Net, a system that 

combines edge detection and segmentation. After using the 

Harris corner detector with extremely minimal mean errors to 

find the corners of the vertebrae, the lumbar lordotic angles 

(LLAs) and lumbosacral angles (LSAs) are discovered. 

However, as the localization and segmentation process become 

more difficult, a completely automated machine learning toolset 

for spinal abnormalities is required in order to avoid invasive 

surgical procedures. 

Chae et al [19] presented an automated method for precisely 

measuring spinopelvic parameters using a decentralized 

convolutional neural network in order to replace the current 

manual process, which not only necessitates skilled surgeons 

but also has processing limitations due to the explosion of big 

data technologies. The suggested approach involves gradually 

constricting the regions of interest (ROIs) for feature extraction, 

which causes the model to concentrate primarily on the crucial 

geometric properties represented as key points. Utilizing 

decentralized CNN involves distinct datasets, which must be 

given specifically for each order. As a result, it takes time to 

create the datasets as well as train the CNN models thoroughly. 

Although, the failure in detection arose because the L5 vertebra 

and sacrum's positions were incorrectly anticipated by the ROI 

detection stage of the second-order ROI detection model. 

Rehman et al [20] use the probability map of a pre-trained deep 

network to initialize the level set and refines the output 

repeatedly under the operation of multiple factors. As a result, 

the network's learning ability is increased, and the network can 

accept large topological form changes in the vertebrae. On two 

separate datasets, the proposed technique was tested. The first 

is a collection of 20 publicly accessible 3D spine MRI datasets 

for disc segmentation, while the second is a set of 173 computed 

tomography scans for segmenting thoracolumbar (thoracic and 

lumbar) vertebrae. 

  

U-Net architecture, on the other hand, fails to perform and 

obtain suitable segmentation performance when dealing with 

segmentation situations with substantial topological shape 

variability. 

Zhang et al [21] proposed a two-phase study with an exploration 

group of 120 Adolescent with idiopathic scoliosis (AIS) and a 

validation cohort of 51 AIS with mean Cobb angles of 23° and 

5.0° at the first visit each. In order to create a composite model 

for prediction, patients with AIS were tracked for a minimum of 

six years. Clinical parameters were gathered on the initial visit 

from standard clinical practice, and blood was tested for 

circulating markers. The composite model has a larger area 

under the curve than do the individual factors currently 

employed in clinical practice. The model had a sensitivity of 

72.7% and a specificity of 90% after being validated by a 

separate cohort the initial study to propose and validate a 

prognostic composite model based on clinical and circulation 

characteristics that could objectively assess the likelihood that 

an AIS curve would proceed to a severe curvature. The study 

did not, however, address the connection between the success 

of the medical intervention and the severity of the disease. 

In order to determine the extent of the damage and forecast the 

illness patterns on the excessively segmented regions and 

features, a novel segment-based classification model has been 

proposed by Ahammad et al [22]. The spinal cord areas in the 

current model are segmented using a hybrid image threshold 

method in order to employ a non-linear SVM classification 
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strategy. The suggested threshold-based non-linear SVM 

exhibits superior accuracy for spinal cord injury (SCI) detection 

than the conventional feature segmentation-based classification 

models. However, this model has to precisely maintain its 

performance in terms of accuracy and error rate. Additionally, 

the noises in the T1-weighted and T2-weighted regions are not 

optimized. 

From the analysis, it is noted that [17] the average segmentation 

accuracy is consistently low in the unregistered class, [18] has 

high computational complexity, and [19] has an error in 

detection. In [20], segmentation performance degrades with 

substantial topological shape variability, [21] provides very less 

information for clinical decision making and [22] has noise in 

the T1-weighted and T2-weighted regions. 

 

3. RESEARCH GAP  

 
Erroneous label findings due to missed vertebrae that were only 

partially visible on the image, similar forms of vertebrae in 

cervical, thoracic, and lumbar regions as well as the labelling 

process failed to detect sacrum. 

Localization error occurs especially in spinal cord images with 

anatomical abnormalities such as additional and transitional 

lumbar vertebrae, it is difficult to properly locate vertebrae in 

the mid- thoracic area. 

Existing semantic and automated segmentation approaches have 

rough image details since they require annotations in the form 

of bounding boxes and the position of the target region thereby 

the intervertebral disc, sagittal region, and spinal canal are 

missed in segmentation results. 

Existing models diagnose single spinal cord disorder with its 

limited scanned images and they did not extract significant 

angular, curvature, structural and distance features which result 

in misclassification because the region-area-based method 

depends on the centroids of multiple vertebrae and even a small 

error in the centroids' computation affects the entire area. 

  
 

4. PROBLEM STATEMENT  

 
Point-of-care technology (POCT) facilitates quick clinical 

decision-making by facilitating access to crucial and pertinent 

information at the point of care. Recent trends in medical 

research state that there is a significant transition in the 

healthcare systems towards the precision medical drug, public 

health, and chronic disorder management. This has increased 

the potential effect of POCT and various important POCT 

techniques have been introduced within the last decade and 

most medical researchers have suggested different 

enhancement techniques. The POCT helps in evaluating the 

importance of healthcare for patients, payers, providers, and 

suppliers. However, it is highly difficult and challenging to 

measure the value of healthcare. It requires efficient, robust, 

systematic, and empirical measures which allow the analysis 

of scientific objectives. Enhancing the outcome after surgical 

procedures and evaluating the potential of health care can be 

achieved using a simple yet effective and scalable data 

outcome collection system. Artificial intelligence, machine 

learning, deep learning, expert systems, and neural networks 

have all recently been used 

  

more and more in diagnostics. AI may easily be applied with 

POCT devices in clinical pathology to give effects 

interpretation or diagnosis. Conventional laboratory testing 

results are used as a general measure to validate the efficiency 

of AI algorithms. 

 

 

There are several potential challenges to successfully 

developing, validating, and implementing enhanced POCT. 

The most frequent obstacles are a lack of a sufficient or exact 

match between skills and clinical demands, or a lack of 

awareness of how clinical care is provided. Clinical 

requirements assessment should be given early priority and 

often revisited at crucial stages of technology development to 

get around this obstacle. Another barrier is the lack of 

demonstration of the clinical usefulness and user user-

friendliness with a focus on the technology alone. Concerns 

about POCT's quality are another issue. The assays used are 

frequently more susceptible to interference than conventional 

laboratory tests and are typically less analytically sensitive 

than assays carried out in the central laboratory. In addition to 

these problems, this study identifies some of the prominent 

challenges which can be summarized as follows: 

● There is constrained evidence to illustrate whether the 

implementation of POCT testing translates into significant 

patient effects in low-resource settings. 

● POCT incorporates various disadvantages or 

limitations such as incorrect handling and/ or maintenance of 

the analyzers by non-trained clinical staff, inadequate or even 

absent calibrations and/or quality controls. 

● Lack of economics brought on by a growth in the 

number of analyzers and the price of reagents, as well as 

inadequate paperwork. Comparing the resulting POCT results 

to standard laboratory findings is challenging. 

Other difficulties with POCT exist, primarily in the area of 

quality control. Clinical workers rather than those with 

laboratory training perform POCT, which increases the risk 

of mistakes since they are less aware of the value of quality 

control and quality assurance procedures. Additionally, it can 

be concluded that POCT does not ensure better patient 

outcomes. In most cases, POCT offers test results with a 

quicker turnaround time. The entire clinical pathway needs to 

be optimized if clinical management is to be accelerated 

successfully. Although it is not the only element in this final 

analysis, a quicker test result can help patients have better 

outcomes. 

 

 

5. PROPOSED SYSTEM 

 
In figure 1. Large clinical data with spine MRI, CT and X-ray 

images are processed using a novel Pipelined labelling with 

level count Circular Localization in which IIR – Hough line 

transform filtering increases the resolution of images with 

improved edge detection thereby all vertebrae are visible in the 

image and the similar forms of vertebrae are labelled separately 

as cervical/lumbar vertebrae and thoracic/sacrum via pipelined 

stochastic convolutional labelling NN in which one stage fetch 

of labels feasibly maintain labelling of different images without 

failure in sacrum detection. Also, the additional and transitional 
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lumbar vertebrae are determined using Level check counter NN 

and the vertebrae are localized properly in all areas of the spinal 

cord component with its circular anisotropic localization 

mechanism thereby eliminating localization error. These 

localized spinal cord components are segmented using Multi-

Atlas Instance SegNet which provide smooth image details with 

high dice score in segmenting the intervertebral disc, sagittal 

region, and spinal canal. Moreover, to effectively diagnose 

spinal cord disorders at an early stage a novel Domineering 

Feature Transformer-based Classification has been proposed in 

which cobb angle, the area between the anterior and posterior 

vertebra, end plate angle, local curvature, bone structure and 

intervertebral distance are extracted using Visual bipartite 

matching loss feature transformer and the various spinal cord 

disorders such as lumbar spinal stenosis, spinal deformities and 

spinal osteoarthritis are classified with its sub-levels based on 

Bilsky Phenotype grading classifier without centroid detection 

thereby enhance the detection rate without misclassification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

                 Fig. 1 Pipeline labelling based Classification Model 
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6. CONCLUSION AND FUTURE WORK 

 
No research has been focused on big clinical data with diverse 

scanned images and the detection of multiple spinal disorders 

which has been done for the first time in this research. 

Abnormalities due to additional/transitional vertebrae have 

been handled for the first time in the localization process. 

Domineering feature extraction and phenotype-based mapping 

in ML classification for the prediction of multiple spinal 

disorders sublevels has been done for the first time.  

In future the above model is to be implemented and can able to 

meet state-of-art. 
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