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ABSTRACT

The disorders in the spine reduce the quality of human life therefore large clinical data with scanned
spinal cord images can be processed by Al-based point-of-care services to quickly and accurately
diagnose spinal cord problems such as lumbar spinal stenosis, spinal deformities and spinal
osteoarthritis. Vertebrae localization and segmentation are essential in the accurate diagnosis of spinal
cord disorders. However, the existing labelling and localization process for scanned images of the spinal
cord is not suitable for large clinical data corroboration from numerous patients and has erroneous label
findings due to missed vertebrae that were only partially visible on the image, similar forms of vertebrae
in cervical, thoracic, and lumbar regions, as well as labelling process, failed to detect sacrum. Also,
localization error occurs especially in spinal cord images with anatomical abnormalities such as
additional and transitional lumbar vertebrae, it is difficult to properly locate vertebrae in the mid-thoracic
area. So, there is a need to develop a novel Al-based point-of-care model for large clinical scanned spine
images to effectively diagnose various spinal cord disorders at an early stage to provide timely treatments
with accurate labelling and segmentation of spinal cord components.

The proposed Al-based point-care-model uses Pipelined labelling with level count Circular Localization,
and then Feature Transformer based Classification which effectively diagnoses various spinal cord
disorders with its sublevels at an early stage with accurate labelling, segmentation and feature extraction
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on the localized spinal cord components.

1. INTRODUCTION

Point-of-care technology (POCT) enables quick clinical
decision-making by providing actionable information at the
point of care. POCT refers to the devices or services that are
used to offer clinical decision support and give quick
laboratory results in real-time. The outcome from POC
devices was uploaded to laptops that were used across the
hospital. With the aid of that information, laboratories could
determine the quality of clinical data and diagnose diseases
with better clinical decision-making [1,2]. Hence, in order to
enhance the outcome in evaluating the potential of health care,
a simple yet effective and scalable large data analysis system
can be used. Artificial intelligence (AI) has been employed
more frequently in diagnostics in recent years. Al may be
easily included in POCT in clinical pathology to maintain the
quality of big clinical data and to produce effective findings
when interpreting diseases via automated diagnostic
classifiers [3-5]. The most common reason for adult clinical
visits in contemporary cultures is back pain, which is brought
on by ailments including spondylolisthesis and spinal
stenosis, incurring significant costs and reducing living
quality and job performance [6]. Hence, it is necessary to
diagnose spinal cord disorders from large clinical scanned
images at an early stage with the point-of-care.

© 2025 The Author(s). Published by ISVE, Ranchi, India

Machine learning (ML) and deep learning (DL) techniques are
broadly used in the prediction and diagnosis of spinal cord
disorders that include spinal oncology, spinal osteoarthritis,
trauma, infections, degenerative diseases, and adult spinal
deformity. Spinal osteoarthritis, Lumbar Spinal Stenosis
(LSS) and spinal deformities are the leading cause of back
pain [7,8]. Spinal osteoarthritis often known as non-
inflammatory or degenerative arthritis develops over time and
usually affects the lower back in which inflammation and pain
are caused by the gradual breakdown of the cartilage between
the joints. Scoliosis is a three-dimensional deformation of the
spine that affects a large portion of the population and is more
common in women than in males. Because of this, it is
considered catastrophic and should be diagnosed early to
prevent major issues with the spinal intervertebral column.
One of the main causes of ongoing lower back discomfort is
LSS. This is a constriction of the lumbar spinal canal caused
by swelling of the soft tissues or bone, which puts pressure on
the spinal nerve roots. Patients will experience symptoms like
neurogenic claudication, neuromuscular pain, and unusual leg
pain. For predicting these spinal cord disorders with an early-
stage alert, ML and DL techniques process large clinical
datasets containing spinal radiography images, computer
tomography (CT) images and magnetic resonance imaging
(MRI) images with effective segmentation and classification
[9-11]. Segmentation of spinal cord images has been
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previously done with the fuzzy c-means method (FCM) and
other soft segmentation approaches. The quantification of disc
degradation, computer-aided disease diagnosis, and
computer-assisted spine surgery would all benefit from the
correct segmentation of intervertebral discs [12,13]. However,
none of these studies provided quantitative segmentation
accuracy evaluation results.

Automatic DL methods such as CNN, U-Net and
DNN for spinal cord disorder detection on a large clinical CT,
radiography and MRI images might notify the reporting
radiologist and clinicians, enabling a speedy decision for
confirmation and therapy planning of spinal cord disorders.
By doing so, the need for medical resources would be lessened
and earlier treatment might be given to prevent neurological
impairment that is irreversible. Prior deep learning in spine
CT, radiography and MRI has shown considerable potential,
especially for the identification of lumbar spinal stenosis,
deformity, and spinal osteoarthritis. Deep learning is still in
its infancy when it comes to the identification and
classification of spinal cord disorders on CT, radiography and
MRI. It now focuses mostly on detection, bone segmentation,
and metastatic load [14-16]. Although, the existing
segmentation and detection approaches for spinal cord
disorder prediction fail to produce a high detection rate and
dice coefficient with erroneous labelling and localization of
spinal cord components. Also, they failed to determine more
than one spinal cord disorder at a time due to the processing
of limited clinical data and unique characteristics related to
diverse disorders are not extracted. Hence there is a need to
propose a novel Al-based point-of-care diagnosis model to
effectively detect various spinal cord disorders by processing
large clinical data images.

2. LITERATURE SURVEY

Al-kafri et al [17] described a method for semantic segmentation
and MRI determination of the lumbar spine using deep learning
to assist doctors in detecting stenosis of the lumbar spine. MRI
scans from 515 patients with symptomatic back pain are
included in this dataset. Expert radiologists make annotations on
each study describing the lumbar spine's observed
characteristics and state. Also, created an evidence truth dataset
with labels for four key lumbar spine areas, which

was utilized as training and test pictures for segmentation
classification algorithms. Based on the Jaccard index, two new
metrics have been developed to assess the quality of the
evidence dataset: validity and consistency. Using SegNet, tried
out semantic segmentation. However, the mean accuracy in
segmentation is consistently lower in the unregistered class.

Mushtaq et al [18] discuss the localization and segmentation of
the lumbar spine, which aid in the analysis of lumbar spine
abnormalities. YOLOVS, the YOLO family fifth variation, is
used to locate the lumber spine. Then, linked the angles with the
region size calculated from the YOLOVS centroids to identify
the lumbar lordosis and achieved a 74.5% accuracy. Acquisition
of segmented vertebrae and ribs, cropped images from YOLOvS
bounding boxes are sent through HED U-Net, a system that
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combines edge detection and segmentation. After using the
Harris corner detector with extremely minimal mean errors to
find the corners of the vertebrae, the lumbar lordotic angles
(LLAs) and lumbosacral angles (LSAs) are discovered.
However, as the localization and segmentation process become
more difficult, a completely automated machine learning toolset
for spinal abnormalities is required in order to avoid invasive
surgical procedures.

Chae et al [19] presented an automated method for precisely
measuring spinopelvic parameters using a decentralized
convolutional neural network in order to replace the current
manual process, which not only necessitates skilled surgeons
but also has processing limitations due to the explosion of big
data technologies. The suggested approach involves gradually
constricting the regions of interest (ROIs) for feature extraction,
which causes the model to concentrate primarily on the crucial
geometric properties represented as key points. Utilizing
decentralized CNN involves distinct datasets, which must be
given specifically for each order. As a result, it takes time to
create the datasets as well as train the CNN models thoroughly.
Although, the failure in detection arose because the LS vertebra
and sacrum's positions were incorrectly anticipated by the ROI
detection stage of the second-order ROI detection model.
Rehman et al [20] use the probability map of a pre-trained deep
network to initialize the level set and refines the output
repeatedly under the operation of multiple factors. As a result,
the network's learning ability is increased, and the network can
accept large topological form changes in the vertebrae. On two
separate datasets, the proposed technique was tested. The first
is a collection of 20 publicly accessible 3D spine MRI datasets
for disc segmentation, while the second is a set of 173 computed
tomography scans for segmenting thoracolumbar (thoracic and
lumbar) vertebrae.

U-Net architecture, on the other hand, fails to perform and
obtain suitable segmentation performance when dealing with
segmentation situations with substantial topological shape
variability.

Zhang et al [21] proposed a two-phase study with an exploration
group of 120 Adolescent with idiopathic scoliosis (AIS) and a
validation cohort of 51 AIS with mean Cobb angles of 23° and
5.0° at the first visit each. In order to create a composite model
for prediction, patients with AIS were tracked for a minimum of
six years. Clinical parameters were gathered on the initial visit
from standard clinical practice, and blood was tested for
circulating markers. The composite model has a larger area
under the curve than do the individual factors currently
employed in clinical practice. The model had a sensitivity of
72.7% and a specificity of 90% after being validated by a
separate cohort the initial study to propose and validate a
prognostic composite model based on clinical and circulation
characteristics that could objectively assess the likelihood that
an AIS curve would proceed to a severe curvature. The study
did not, however, address the connection between the success
of the medical intervention and the severity of the disease.

In order to determine the extent of the damage and forecast the
illness patterns on the excessively segmented regions and
features, a novel segment-based classification model has been
proposed by Ahammad et al [22]. The spinal cord areas in the
current model are segmented using a hybrid image threshold
method in order to employ a non-linear SVM classification



strategy. The suggested threshold-based non-linear SVM
exhibits superior accuracy for spinal cord injury (SCI) detection
than the conventional feature segmentation-based classification
models. However, this model has to precisely maintain its
performance in terms of accuracy and error rate. Additionally,
the noises in the T1-weighted and T2-weighted regions are not
optimized.

From the analysis, it is noted that [17] the average segmentation
accuracy is consistently low in the unregistered class, [18] has
high computational complexity, and [19] has an error in
detection. In [20], segmentation performance degrades with
substantial topological shape variability, [21] provides very less
information for clinical decision making and [22] has noise in
the T1-weighted and T2-weighted regions.

3. RESEARCH GAP

Erroneous label findings due to missed vertebrae that were only
partially visible on the image, similar forms of vertebrae in
cervical, thoracic, and lumbar regions as well as the labelling
process failed to detect sacrum.

Localization error occurs especially in spinal cord images with
anatomical abnormalities such as additional and transitional
lumbar vertebrae, it is difficult to properly locate vertebrae in
the mid- thoracic area.

Existing semantic and automated segmentation approaches have
rough image details since they require annotations in the form
of bounding boxes and the position of the target region thereby
the intervertebral disc, sagittal region, and spinal canal are
missed in segmentation results.

Existing models diagnose single spinal cord disorder with its
limited scanned images and they did not extract significant
angular, curvature, structural and distance features which result
in misclassification because the region-area-based method
depends on the centroids of multiple vertebrae and even a small
error in the centroids' computation affects the entire area.

4. PROBLEM STATEMENT

Point-of-care technology (POCT) facilitates quick clinical
decision-making by facilitating access to crucial and pertinent
information at the point of care. Recent trends in medical
research state that there is a significant transition in the
healthcare systems towards the precision medical drug, public
health, and chronic disorder management. This has increased
the potential effect of POCT and various important POCT
techniques have been introduced within the last decade and
most medical researchers have suggested different
enhancement techniques. The POCT helps in evaluating the
importance of healthcare for patients, payers, providers, and
suppliers. However, it is highly difficult and challenging to
measure the value of healthcare. It requires efficient, robust,
systematic, and empirical measures which allow the analysis
of scientific objectives. Enhancing the outcome after surgical
procedures and evaluating the potential of health care can be
achieved using a simple yet effective and scalable data
outcome collection system. Artificial intelligence, machine
learning, deep learning, expert systems, and neural networks
have all recently been used
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more and more in diagnostics. Al may easily be applied with
POCT devices in clinical pathology to give effects
interpretation or diagnosis. Conventional laboratory testing
results are used as a general measure to validate the efficiency
of Al algorithms.

There are several potential challenges to successfully
developing, validating, and implementing enhanced POCT.
The most frequent obstacles are a lack of a sufficient or exact
match between skills and clinical demands, or a lack of
awareness of how clinical care is provided. Clinical
requirements assessment should be given early priority and
often revisited at crucial stages of technology development to
get around this obstacle. Another barrier is the lack of
demonstration of the clinical usefulness and user user-
friendliness with a focus on the technology alone. Concerns
about POCT's quality are another issue. The assays used are
frequently more susceptible to interference than conventional
laboratory tests and are typically less analytically sensitive
than assays carried out in the central laboratory. In addition to
these problems, this study identifies some of the prominent
challenges which can be summarized as follows:

o There is constrained evidence to illustrate whether the
implementation of POCT testing translates into significant
patient effects in low-resource settings.

o POCT incorporates various disadvantages or
limitations such as incorrect handling and/ or maintenance of
the analyzers by non-trained clinical staff, inadequate or even
absent calibrations and/or quality controls.

o Lack of economics brought on by a growth in the
number of analyzers and the price of reagents, as well as
inadequate paperwork. Comparing the resulting POCT results
to standard laboratory findings is challenging.

Other difficulties with POCT exist, primarily in the area of
quality control. Clinical workers rather than those with
laboratory training perform POCT, which increases the risk
of mistakes since they are less aware of the value of quality
control and quality assurance procedures. Additionally, it can
be concluded that POCT does not ensure better patient
outcomes. In most cases, POCT offers test results with a
quicker turnaround time. The entire clinical pathway needs to
be optimized if clinical management is to be accelerated
successfully. Although it is not the only element in this final
analysis, a quicker test result can help patients have better
outcomes.

5. PROPOSED SYSTEM

In figure 1. Large clinical data with spine MRI, CT and X-ray
images are processed using a novel Pipelined labelling with
level count Circular Localization in which IIR — Hough line
transform filtering increases the resolution of images with
improved edge detection thereby all vertebrae are visible in the
image and the similar forms of vertebrae are labelled separately
as cervical/lumbar vertebrae and thoracic/sacrum via pipelined
stochastic convolutional labelling NN in which one stage fetch
of labels feasibly maintain labelling of different images without
failure in sacrum detection. Also, the additional and transitional



lumbar vertebrae are determined using Level check counter NN
and the vertebrae are localized properly in all areas of the spinal
cord component with its circular anisotropic localization
mechanism thereby eliminating localization error. These
localized spinal cord components are segmented using Multi-
Atlas Instance SegNet which provide smooth image details with
high dice score in segmenting the intervertebral disc, sagittal
region, and spinal canal. Moreover, to effectively diagnose
spinal cord disorders at an early stage a novel Domineering
Feature Transformer-based Classification has been proposed in
which cobb angle, the area between the anterior and posterior
vertebra, end plate angle, local curvature, bone structure and
intervertebral distance are extracted using Visual bipartite
matching loss feature transformer and the various spinal cord
disorders such as lumbar spinal stenosis, spinal deformities and
spinal osteoarthritis are classified with its sub-levels based on
Bilsky Phenotype grading classifier without centroid detection
thereby enhance the detection rate without misclassification.
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6.

CONCLUSION AND FUTURE WORK

No research has been focused on big clinical data with diverse
scanned images and the detection of multiple spinal disorders
which has been done for the first time in this research.
Abnormalities due to additional/transitional vertebrae have
been handled for the first time in the localization process.
Domineering feature extraction and phenotype-based mapping
in ML classification for the prediction of multiple spinal
disorders sublevels has been done for the first time.

In future the above model is to be implemented and can able to
meet state-of-art.
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