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ABSTRACT

This India’s agricultural sector employs the most people. Agricultural engagement reports for around KEYWORDS

60% of India's population and 18% of its GDP. Low production is due to a absence of research in this Soil Moisture, Soft Computing,
industry. Waterlogging, soil erosion, nitrogen shortage, and other issues drive Indian agricultural land. Prediction, Neural Network, Data
Computational research and machine learning play a important role in advancing the agricultural Mining Convolutional Neural
industry. Different scientific and technological researcher has been performed on soil moisture Network, Machine Learning,

prediction. Numerous methodologies have been proposed for addressing this challenge, including deep
learning, machine learning, Internet of Things (IoT), statistical approaches, and image processing
techniques. This paper presents a comprehensive survey of various research works focused on soil
moisture prediction utilizing soft computing, data mining machine and learning, techniques. These
include support vector machines, neural networks, rough set theory, fuzzy logic, k-means clustering,
genetic algorithms, and K-NN (k-nearest neighbors). Additionally, this paper presents existing works

and suggestions for future research directions.

1. INTRODUCTION

ML algorithms and deep learning models will analyze
environmental variable features, such as humidity, temperature,
soil texture, and precipitation, to estimate soil moisture content.
This soil moisture prediction model will help farmers and
agronomists  optimize irrigation scheduling, prevent
overwatering or drought stress, and improve the water resource
management. The implementation of this technology will lead
to sustainable agriculture, reduced water wastage, and
improved crop yield, making precision farming more accessible
and data-driven. This manuscript is presented as below: Section
2 indicates a literature review, and Section 3 describes
discussion and future directions.

A country's overall progress with other nations is primarily
determined by its agricultural sector. It is the way of life in a
place like India. Agriculture remains one of the primary fields
where technical developments are highly valued, even in the era
of technology. Farmers can increase crop output and apply
fertilizers in the correct amounts by having a precise
understanding of the soil's nutrient composition. As a result,
soil nutrient analysis has become essential in agriculture.
Machine learning approaches significantly improve the speed
and precision of agricultural analysis.

Machine learning-powered smart farming, with its high-
precision algorithms. It involves image processing for crop
quality identification, various algorithms for crop production 2. LITERATURE REVIEW
prediction, sensors and algorithms for monitoring field
conditions, and disease detection, including crop, soil, and
water management, consistently producing useful outcomes.
Soil moisture is a critical factor in agriculture, directly affecting
crop growth, irrigation efficiency, and overall farm
productivity. Traditional soil moisture prediction methods, like
gravimetric analysis and time-domain reflectometry (TDR),
can be limited in spatial coverage, labor-intensive, and

Soil moisture prediction is a crucial aspect of precision
agriculture, as it influences irrigation scheduling and water
resource management. Several studies have explored ML
methods to increase soil moisture prediction accuracy.
Traditional methods, such as gravimetric analysis and time-
domain reflectometry (TDR), provide precise measurements
but are limited in scalability and labour-intensive. Recent
advancements integrate IoT-based sensors, meteorological

expensive. . . . .
inputs, and remote sensing data to improve accuracy. Various
Therefore, machine learning (ML) techniques have been ML techniques, including Gradient Boosting, Support Vector
proposed to accurately and efficiently predict soil moisture Machines (SVM), Random Forest (RF), and Deep Learning
levels, thereby overcoming the challenges of traditional techniques like LSTM and CNN, have been applied to model
methods. The model will integrate multiple data sources, soil moisture dynamics. These techniques utilize historical data
including IoT-based soil sensors, meteorological data and and real-time inputs to enhance the reliability of predictions.
remote sensing imagery, to enhance accuracy. Existing research has demonstrated the effectiveness of hybrid

models that combine multiple algorithms for improved
accuracy. Future work suggests integrating edge computing for
real-time analysis, enhancing model interpretability for
practical use by farmers, and incorporating additional
environmental parameters to refine predictions [5]. Several

© 2025 The Author(s). Published by ISVE, Ranchi, India
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papers summarize the prediction of soil moisture using ML
techniques. Summarization is presented in a table that contains
the paper title, the used dataset, methods, tools, advantages,

issues, and accuracy, as shown in Table 1.
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TABLE I. SUMMARY OF PREVIOUS STUDIES

S. Paper Data Set/ Features Tec.hmque/ Advantages Issues/ Disadvantage Accuracy
No. Reference Algorithm used
1. [1] Temperature, Multiple Linear | 1. Improved agricultural | 1. Narrow focus on only Nitrogen,
Moisture, pH, | Regression (MLR) efficiency and productivity. | Phosphorus, Potassium.
Conductivity, 2. Cost effective 2. Overfitting and accuracy issue.
Nitrogen, 3. Data-driven decision | 3. Regional limitations in the | 78%
Phosphorus, making. applicability of the model.
Potassium 4. Scalability
2. [2] Soil  type, pH, | Randon Forest | 1. Improved crop yields. 1. High initial setup cost
Nutrient, Moisture, | (RF), SVM 2. Efficient resource | 2. potential overfitting
Soil texture, Soil utilization. 3. Complexity of soil variations
depth, Temperature, 3. Time and cost effective. 89%
Conductivity, Soil 4. Improved decision
organic matter making, scalability across
regions and sustainability.
3. [3] Soil texture, | RF, SVM, ANN, | 1. Enhance crop yield, | 1.False positive and errors
Moisture, Soil | Deep Learning scalability, and
nutrients, Soil sustainability. 80-95%
organic matter 2. Real-time  decision
making.
3. Adaptability
4. [4] Soil  depth, pH, | Decision tree, | 1. Improved crop yield 1. Limited accuracy
Nitrogen, SVM, KNN 2. Cost effective 2. Technical complexity 80%
Potassium, 3. Scalability and Versatility
Phosphorus, Water
holding  capacity,
Porosity,
Conductivity,
Carbon
5. [11] 629 images of 38 | ANN, CNN, MLP, | 1. Soil moisture prediction | 1. High content moisture was
soil samples, direct | LR, SVM, PLS, RF | using smartphone will be | found in the dark-coloured soils.
and indirect sunlight quicker, 2. Other factors like geology,
conditions 2. Less expensive, topography, climate, and so on, 99%
3. Easier to assess. were not considered explicitly.
4. It predicts accurate soil
colour values and soil
moisture values.
6 [6] Wavelength Gradient 1.AI techniques shows the 1. Noisy and incomplete 72%
Range-visible (400- | Boosted possibility of predicting crop | Data.
700nm), near | Regression Tree, selection, soil fertility, 2. Overfitting
infrared (700- | RF based on factors such as, soil | 3. High computational
2500nm), nutrients, soil pH and Costs
Reflectance / precipitation. 4. Senor limitations.
Absorbance values,
Nutrient Content,
soil pH, Moisture
Content.
7 [7] Images of the soil. Decision Tree | 1. Automated soil quality | 1. NB, DT gave poor accuracy | 96%
(DT), Naive Bayes prediction without manual | (70-80%) o
(NB), and testing 2. WEKA, Rapldeer, and
’ 2. High accuracy | Orange were not suitable for the
SVM 3. Helps in crop yield | image dataset.
image prediction and decision- | 3. Azure ML was unable to display
classifier. making. all soil properties.
8 [8] Portable X-ray RF, Partial least 1. Quick and simple | 1. DL techniques are constrained | 82-85%,
fluorescence data Squared regression | prediction of soil properties. | by high-dimensional data and very | RDNet: R? =
and Vis-NIR | (PLSR), 2. Maximum performance | small sample sizes. | 0.86
(visible was attained using RDNet. | 2. Due to a lack of training
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and near-Infrared

SVM, CNN (VGG,

3. Visualizations cut down

samples, CNN/DenseNet

spectroscopy) data. | DenseNet), errors and analysis time. | performed poorly.
WaveNet, RDNet | 4. Scalable for soil samples
(Residual  Dilated | that are dispersed
Neural Network). throughout the world
9 91 Soil moisture | Linear, Lasso, and | 1. Detailed analysis of ML | 1 Data availability varies by | 90-95%
content, field slope, | polynomial techniques for predicting | region.
SOM, rainfall, regression crop yield. | 2. Issues with preprocessing and
temperature,  pH, | K-NN, AdaBoost | 2. The integration of several | data quality.
nitrogen, SVR, CNN, MLP, | datasets is highlighted. | 3. Standardized ~ benchmark
phosphorus, and | Gaussian NB 3. Determines precision | datasets are lacking..
potassium values. agriculture's  opportunities
and gaps.
10 [10] MODIS data, Crop SVM, This hybrid technique is | Not much 82%(RF)
images, Moisture Linear Regression, | efficient for accurately 82%
sensor data, AdaBoost, smart farming. predicted. (AdaBoot),7
thermal images Multilayer 3%
Perceptron (SVM),93.3
(MLP), Random %
Forest (MLP)
11 [21] Three datasets — | SVR, MLR, RNN 1. Easy to understand and | 1. Accuracy decreases with a | 1-day: MSE
Bragg's Farm, effective  for short-term | larger horizon (7-day). 0.15,R?0.96
TAMU North forecasting. 2. Requires more data. 2-day: MSE
American, OzNet 2. Less sensitive to outliers. | 3. Prone to vanishing/exploding 0.40,R20.90
Hydrological 3. Dataset from different 7-day: MSE
Monitoring Network climate conditions 1.2,R20.713
with Daily average (MLR)
soil moisture and
Soil temperature
12 [22] 29 weather stations | (CNN-LSTM 1. Captures spatial & | 1. High computational cost. | 98%
with 32 features like | Genetic Algorithm, | temporal patterns. 2. Requires a large labeled dataset
water capacity, | SVM, RF, ANN, | 2. Robust under uncertainty. | 3. IoT sensors prone to noise &
temperature, Phyl-DGA-CaDT 3. Supports  real-time | missing data
rainfall, wind Framework decision making.
(Physics-Informed 4. Good for small to medium
Dynamic Graph | datasets
Attention  Causal | 5. Handles big IoT data
Decision efficiently
Transformer) 6. Easy to implement.
7. Improves  resource
allocation (water, fertilizer,
energy)
13 [23] Volumetric water Multihead LSTM 1. Show long and short-term | 1. Less accuracy for monthly | R2=95.04%
content (VWC) at and dependencies in soil | prediction due to the small training | for soil
10 and 30 cm moisture time series. | data size. | moisture
depths, aggregated 2.  Ensemble technique | 2. Performance is sensitive to | forecasting
into hourly, daily, improves generalization | hyperparameters.. up to one
weekly, and compared to a single-head | 3. Lack of auxiliary inputs | month ahead
monthly series LSTM. (temperature, precipitation, etc.).
3. Provides forecasts for | - Overfitting risk with small
monthly, weekly, hourly, | training data.
daily, and bases.
4. Outperforms individual
LSTM techniques.
14 [24] soil temperature at 5 | Encoder Decoder | 1. Detects intermediate | 1. High computational | Achieved R?
cm, precipitation, | LSTM with | time-series  dependencies. | requirements compared to simpler | = 0.966 (1-
soil moisture at 5 cm | Residual Learning | 2. Residual learning reduces | models. day), 0.941
depth, atmospheric | (EDT-LSTM) deterioration ~ for  deep | 2. Model performance depends | (3-day),
temperature, and networks. mainly on hyperparameters like | 0.915 (5-
time variables (year, 3. Encoder—decoder LSTM | batch size, iterations, and time | day), 0.881
day of year, hour) outperforms traditional | step. (7-day),
LSTM. 0.879 (10-
4. Shows robustness for day)
climates and vegetation
15 [25] ERAS climate | Long Short-Term | 1. Captures temporal | 1. Sensitive to outliers at some | LSTM
reanalysis data | Memory (LSTM) | dependencies in  soil | stations. with R* >
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(2011-2020) and | network moisture dynamics. | - Requires more computational | 0.90  and
Yr weather | (compared with | - Lower errors vs. | resources. MAE ~
forecast (2019- | ARIMA and | ARIMA and RF. | - Slight lag compared with | 0.021
2020), including | Random Forest). | - Robust across soil types | sensor data.

daily max/min and altitudes.

temperature, - Scalable using open-

precipitation, source data.

vapour — pressure

deficit, and soil

moisture from 28

meteorological

stations in Serbia.

Researchers in [17]-[20] have conducted a comparative
analysis of various ML, soft computing (SC), and data mining
(DM) techniques used in diabetes and thunderstorm
prediction. Their findings discuss the strengths, limitations,
methodologies, tools employed, prior studies, and prospective
advancements. The tools and techniques have also been
evaluated based on criteria such as advantages, challenges, and
applications.

3. DISCUSSION AND FUTURE

Predicting soil moisture remains a complex challenge. Several
research  studies have examined various datasets,
methodologies, and tools, as well as their benefits and
limitations. In this context, different SC, ML, and DM methods
have been used to predict soil moisture. However, an effective
method is needed for accurate lightning and thunderstorm
prediction. Therefore, the authors summarize the future
guidelines of several studies, along with current work, in the
subsequent Table II.

DIRECTIONS

TABLE II. FUTURE RESEARCH DIRECTIONS: A SUMMARY OF EXISTING WORK

S.No.

Paper

Exiting Work

Future Work

Eftychia Taktikou
et al. [11]

The project utilizes remote sensing techniques, primarily
employing MODIS satellite data, including NDVI, Land
Surface Temperature (LST), Diurnal LST (DLST),
IApparent Thermal Inertia (ATI), and Soil Moisture
Saturation Index (SMSI), as well as in-situ diele ctric
sensors. Soil moisture was predicted at various depths
using linear regression models.

This project can achieve higher accuracy using deep
learning models, multi-sensor data fusion (e.g., Sentinel,
Landsat, SMAP, SAR), and integration with IoT soil
sensors. These approaches can capture non-linear
relationships, provide higher spatial-temporal resolution,
and enable real-time soil moisture monitoring for smart
irrigation and climate applications.

Oliviu Matei et al.

This paper used a data mining technique to predict soil

Advanced ML algorithms (e.g., Neural Networks,

[Elsaadani et al.

and LSTMs (for capturing temporal dependencies) in a
Convolutional LSTM (ConvLSTM) model. ConvLSTM

moisture levels. Data mining uses sensor data [Random Forest, LSTM for time series) can be utilized for
[12] (temperature, humidity, soil characteristics) to estimate [further improvement. Integration with IoT and satellite
soil moisture levels. remote sensing will improve prediction accuracy and
applicability in smart agriculture.
[3] [Mohamed [t associates CNNs (for take out spatial characteristics) [Hybrid ML models can be utilized to enhance accuracy.

Integration with multi-source data, such as SMAP,
Sentinel-1 SAR, or high-resolution optical data to

[14]

Transformer, hybrids, attention-based, and GAN-LSTM)
land machine learning models (RF, SVR, and ELM) for
predicting soil moisture. The results indicated that LSTM
was the most successful, while CNN-LSTM hybrids
ladded complexity with little advantage, while FA-LSTM
and GAN-LSTM provided additional enhancements. By

employing t-SNE and SHAP analysis, the model's

[13] is trained against reference soil moisture datasets, [improve spatial coverage and depth sensitivity.
g p P g P ty
atmospheric  variables, rainfall, and land cover
information.
[4] [Yanling Wang et al. [This paper compared deep learning models (LSTM, CNN, [Future work can focus on automating GAN-LSTM

lhyperparameter tuning and integrating physical
lhydrological principles with data-driven models to
enhance long-term prediction.
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interpretability improved.

[16]

[5] [Mehmet Furkan [The study utilized soil texture, topography, climate, and |[Future studies will combine LSTM with attention
Celik et al. satellite data to develop an LSTM-based framework for [processes to better capture temporal interdependence and
short-term soil moisture prediction. feature relevance. This goals to increases the
[15] interpretability of the model's physical relevance, as well

as its forecast accuracy.
[6] IYeguang li et al. The paper presents an adaptive weight LSTM (AW- [For the model's future development and expansion to

LSTM) multi-task learning technique that improves
global soil moisture prediction by dynamically allocating
weights between tasks based on correlation and gradient
behaviour. Existing work combines soil moisture with
related variables (e.g., soil temperature, heat flux) and

lhigher-resolution data, testing performance in various
climates and geographical areas, combining process-
based and data-driven methodologies, and enhancing
interpretability to better match predictions with physical
laws.

ask and fixed-weight models.

|fh0ws that adaptive weighting outperforms both single-

The authors recommend that future research efforts focus on
designing an expert system for soil moisture prediction to
enhance the accuracy of predictions.
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