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ABSTRACT

Underwater pollution, particularly from plastic and other debris, poses a serious environmental threat to marine
ecosystems and biodiversity. Traditional methods for detecting underwater trash, such as sonar-based systems and
manual inspections, face significant limitations, especially in deep, turbid waters with low visibility. Recently,
deep learning algorithms, including Convolutional Neural Networks (CNNs) and frameworks like YOLO (You
Only Look Once) and Faster R-CNN, have shown promising results in automating underwater trash detection.
These models, trained on large datasets like Trash Can, offer high accuracy and real-time detection capabilities.
However, challenges persist, such as environmental variability, including changes in water clarity, light conditions,
and surface disturbances, which can distort images and reduce detection accuracy. Additionally, the lack of
comprehensive, annotated datasets, particularly for small debris like microplastics, and issues related to data
imbalance complicate the development of robust detection systems. Despite these obstacles, deep learning models
continue to improve with advancements in model architectures, data augmentation techniques, and integration of
multimodal sensor data, such as sonar, to enhance detection in varied underwater conditions. The future of
underwater trash detection lies in overcoming these challenges by optimizing lightweight, real-time models for
resource-constrained platforms and enhancing detection of small and overlapping debris. This paper provides a
comprehensive review of current deep learning techniques for underwater trash detection, highlighting
advancements, challenges, and future research directions for improving model performance and scalability.

1. INTRODUCTION

Marine pollution, and the increasing prevalence of trash
underwater, is one of the most serious environmental challenges
today. The rapid accumulation of plastics and debris in aquatic
ecosystems represents a clear threat to marine biodiversity,
disrupts ecological systems, and threatens the health of aquatic
organisms. Plastics will remain in marine environments for a
long time due to their durability, thereby inducing long-term
ecological effects. The annual estimate of 8 million metric
tonnes of plastic trash entering the oceans continues to add to
the concerns of marine pollution [1]. Marine debris—in
particular plastics—seriously impacts marine species through
ingestion, entanglement, and disruption of habitat. Plastic waste
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is claimed to kill millions of marine animals every year. And,
when it enters food chains, it can negatively affect human health
[2]. Solving this challenge requires efficient and real-time
identification and classification systems that detect and classify
marine debris. Efficient and accurate identification of marine
debris is crucial for conservation efforts that promote and
protect marine habitats, as well as minimizing impact and harm
to the environment.

© 2025 The Author(s). Published by ISVE, Ranchi, India

Fig. 1 Underwater Trash Detection in Marine Environments

(3]

Conventional methods for monitoring marine debris, including
sonar-based systems and physical inspections of sites, come
with considerable limitations given lower visibility in deep or
turbid waters. These methods usually do not have the scalability
or accuracy available for operations in real-time or on a larger
computational scale. To this end, deep learning techniques have
been an intriguing method to automatically search for debris.
Convolutional neural networks (CNNs) and advanced systems
such as YOLO (You Only Look Once) or Faster R-CNN have
made a lot of progress in works involving locating objects and
classifying [4].
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There are some problems with using deep learning to find debris
underwater, even though these models had high mean average
precision (mAP) scores and real-time detection speeds when
tested on larger datasets like the Trash Can dataset. They will
probably work well for keeping an eye on trash in underwater
environments. The underwater environment is variable by
nature; environmental features may alter water clarity, change
lighting, and disturb the surface (e.g proximity to boat traffic or
weather), leading to distortion in the images and reduced
accuracy in detection models. In addition to limitations of the
underwater system, the availability of data, specifically for
micro plastics, and data imbalance, where categories of debris
can be frequently larger than other types, will complicate the
process of building strong and accurate models [5]. These
limitations hinder the generalization of deep learning models
across diverse underwater environments and further complicate
the detection of rare debris types.

Even with these barriers, deep learning models continue to show
great potential for underwater trash detection. The future will
involve working to overcome these shortcomings using
advanced data augmentation, improved model architectures,
and multimodal sensor data, like sonar, to assure detection
accuracy in all types of environments [6].

Furthermore, improvements in real-time processing systems
and computational efficiencies will be pivotal to ensure these
models operate successfully in the marine environments in the
real world. This paper provided a complete summary of the most
recent deep learning models in detecting underwater debris and
shows advancements in the field with the challenges that remain
to make detection more accurate and scalable in the future.

2. Deep Learning Algorithms for Underwater Trash
Detection

One area of neural networks that gets a lot of attention is deep
learning. You can think of neural networks as the building
blocks of deep learning systems. A "deep" neural network is one
that has more than three layers of nodes [7].

A deep neural network is put together in Figure 2. Some of the
levels are hidden, and there is only one exit layer. Most of the
time, deep neural networks work in a way called "feed-
forward." This means that the data only moves from the entry
layer to the exit layer. It is also possible for data to go from the
output layer to the input layer and back again. This process is
known as back spread. When we use back propagation to train
the deep learning model, we can find the mistake in every cell.
We can now change the way we do things to get better results.
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Neural Network Architecture [8]

In Figure 2, you can see how the Neural Network works. This
network is made up of three main parts. There is an output layer,
a secret area, and an entry area.

e Inputlayer: The first neural layer's input layer is in charge
of bringing in the first data so that it can be processed by
the layers that follow.

e Hidden layer: This is the second kind of layer, and there
may be one or more of them in neural networks for high
efficiency and complexity. They do many things at once,
like changing data and making features automatically.
After that, the information is sent to the next layer to be
handled further.

e  Output layer: In the last step, projections are found that
meet the needs. Many layers of nodes are connected to each
other to make up an artificial neural network. These layers
are called "node layers," and they work a lot like the brain's
neural network.

As you can see in Figure 2.1, a neural network usually has one
input layer, one or more hidden layers, and one output layer. No
matter how the program is built, the number of secret layers may
change. The number of input and output levels stays the same.

Each of the linked nodes, which are also called neurones, has a
weight and a cutoff that go with it. When the output value of a
neurone is higher than a certain cutoff number, that neurone is
turned on. When a neurone is triggered, it sends data to the next
layer of the network [18]. If the chosen neural network has more
than one working layer, the steps above are done more than once
to get a single result. The results from the processing stages are
used as sources to figure out the neural network's end output.
They change the weights of the neurons in this step to make the
neural network as accurate as possible. The buried layers are
also known as processing layers. The secret layers then handle
the collected data in this way to get correct features or
classifications.

1. YOLO

YOLO, which stands for "You Only Look Once," is one of the
best known deep learning models for finding things in real



time." Because of how it's built, YOLO can identify different
kinds of objects in a single pass over a picture. This means that
it can be used for real-time analysis and is useful for any quick
task, like finding trash underwater. From YOLOvV3 to YOLOv4
and now to YOLOVS, YOLO has gotten faster, more accurate,
and better at finding items of different sizes. This makes it the
best choice for real-time recognition in tough settings like seas
and marine ecosystems.

YOLOV3 (2018)

YOLOv3 was a major improvement over previous versions,
contributing to improved speed and accuracy in the detection.
An important element of YOLOv3 was adopting a deeper
network architecture with residual connections that improved
accuracy at feature extraction. Multi-scale forecasts were also
used by YOLOV3 to find items of different sizes and forms that
were moving through a single picture.These capabilities are
especially pertinent in underwater environments, where
different kinds of debris, such as plastic waste can be identified
despite challenges like changing levels of water clarity and light
refractions [9].

YOLOV4 (2020)

YOLOv4 was launched in 2020 and was designed with several
optimizations to better use performance on both GPU and CPU
systems to fit a wider array of hardware. To make it easier to
find, YOLOv4 used methods like the Mish activation function,
weighted leftover links, and the CSPDarknet53 backbone.The
model was particularly optimized for use on large datasets,
allowing it to process high-resolution images in real-time.
YOLOvV4’s ability to perform accurate object detection while
maintaining computational efficiency made it ideal for
underwater trash detection, where large volumes of
environmental data need to be processed rapidly. YOLOv4’s
versatility in both hardware configurations and detection
performance marked a significant step forward [10] .

Overview of YOLOVS

The new way we find targets underwater is based on what we
talked about when we talked about the general structure or
model structure of YOLOVS. In 2020, Glenn Jocher put out this
record. YOLOVS adds to the model framework of the YOLO
series programs that came before it.

1. Proposed Model

This section talks about the better YOLOvVS underwater target
recognition method. Figure 3 shows that we started by
processing the data, which meant that we cleaned it up and gave
it names. After that, the better YOLOVS5 network was used to
increase the accuracy of the model recognition. Specifically, we
created a fresh backbone network for YOLOVS that is based on
the Swin transformer. Additionally, we offered a better way to
combine features from different scales, and by using various
detection levels, we improved the confidence loss function.

Improved YOLOVS Network
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Fig 3. The improved YOLOVS is used for underwater target
detection.

2. Backbone Network Based on Swin Transformer

Images taken underwater during tracking are affected by the fact
that water doesn't let all light through. This hides the targets that
have been found, making it hard for the monitor to tell them
apart. So, during the detecting process, the features of the targets
that are being looked for should stand out more than the features
that are in the background [11]. Paying attention to yourself is a
good approach. Change Changer replaces the recurrent layers
that are usually used in encoder-decoder designs with multi-
headed self-attention, which works well in the field of natural
language processing [12]. Transformer was first used in the
picture world by Changer of Vision. TPH-YOLOv5 The
forecast header now has Transformer encoder blocks instead of
some of the convolution blocks or CSP bottleneck blocks that
were in the first version of YOLOVS. These blocks helped us
find targets in scenes where UAVs were used. When
Transformer is used directly in the area of computer vision,
there are two problems. (1) In both areas, the feature sizes used
are different. It doesn't change when you do natural language
processing. The feature size changes a lot in computer vision,
though. Natural language processing doesn't need as high of a
resolution as computer vision does. Also, using Transformer
directly in computer vision can be hard on the computer because
it uses the square of the picture resolution. Also, underwater
devices don't have a lot of computing power, so Transformer
can't be used to find targets underwater.

Swin Transformer is a successful way to use self-attention in
computer vision, and it's better than earlier work in the
following ways [13]: We are going to talk about three things:
(1) a method used by CNN to build a hierarchical Transformer;
(2) the idea of locality to do self-attention calculations within
the window region without overlap; and (3) a shifted window
partitioning method to make the window-based self-attention
module connection work. Based on the work above, the
processing difficulty goes up linearly with the size of the
original picture. As the level goes up, picture blocks are slowly
put together to make a Transformer that can be used for anything
as a visual network that holds everything together.

Figure 4 shows how the front end of the network that was made
on the Swin Transformer is put together. Patch division and
linear embedding are the two parts that make up patch



embedding. The feature-map module is split into small pieces
that don't touch each other. The input features are then put into
any number of dimensions using linear embedding. This block
is made up of W-MSA (window multi-head self-attention) and
SW-MSA (shifted-window multi-head self-attention). It's easier
to do the math with the W-MSA because it splits the feature
map, and data can move between screens with the SW-MSA.
Patch joining is used to reduce the size of the raw feature map.
The first step is to give the patch embedding module the original
¢ h a w feature map. The feature map is then broken up into
small pieces that don't touch each other to make a 96 x (h/4) x
(w/4) feature map. First, this map is put into two stacked Swin
Transformer block modules. This makes a new 96 x (h/4) x
(w/4) feature map. Next, feature maps 3, 4, and 5 are made with
the help of three patch merging levels and the Swin Transformer
blocks. Five feature maps are fed into the FPN (feature pyramid
networks) section's neck. There are three of them: 3, 4, and 5.
This picture (Figure 5) shows how YOLOVS is put together
when Swin Transformer is the main network.
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Fig 4. The Swin Transformer architecture [14].
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Fig 5. The structure of YOLOvVS using Swin Transformer as
the backbone network.
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YOLOVS (2021)

YOLOVS is the most recent version in the YOLO family, and it
includes a few useful advancements in occlusion handling,
learning multi-scale features, and processing speed. YOLOvVS
has been optimized to detect smaller items, which is especially
helpful in detecting trash under water when you are detecting
microplastics and smaller detritus, as these types of trash can be
particularly hard to detect. YOLOvV8 can accommodate
processing the changes in visual representation related to
dynamic and messy under water environments in which many
different kinds of trash and debris are within the same frame.
Because it can work with bigger datasets and is faster, YOLOVS
is without a doubt one of the best tools for real-time underwater
trash recognition apps.

1. YOLOvV8 Network Architecture

YOLO is a popular real-time object detection system, initially
developed by Joseph Redmon and others in 2016. YOLO
network architecture is based on classifying and detecting
objects in a single pass, as compared to many -earlier
frameworks that revered object localization by classifying
images in multiple passes. The development of YOLO was a
disruptive innovation for the computer vision space, and it is
exceptionally fast and efficient at detection. In January 2023,
Ultralytics launched YOLOVS, which marked a new generation
of YOLO technology. YOLOv8 comes in different forms that
can be used for different visual jobs. YOLOvV8 has a backbone
network that is similar to YOLOVS5, and it also has a new module
called C2f that recalls traits in a context to improve recognition.
Figure 1 shows how YOLOVS is put together. From picture
processing to recognition output, the flow is shown in the figure.
The first step is visual input data, the visual input will be pre-
processed, using model-selective augmentation and resizing
methods. When the model receives the image for feature
detection, the pre-processed image will have gone through
several pre-processing techniques. This is the main job of the
machine: feature extraction. After the picture has been pre-
processed, it is sent to the backbone network.
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Fig 6: YOLOVS8 Network Architecture [15]

The neck of the network is where the central feature extraction
unit links the extracted features in a single extended channel.
The architecture of the network with the neck configuration is
designed to detect features at three different scales (small - 20 x



20, medium - 40 x 40, large-80 x 80), optimizing the detail of
the required features of the differing sizes of the object. The last
aspect of this cycle is the use of this multi scale outputs which
are determined by the aspect of the features examined in the
head of the network, which is an important step of the detection
result, in deciding how to bring the promissing features together
as a showcase of the detection potential of the YOLOVS
network.

Advantages of YOLO for Underwater Trash Detection

e Speed: One great thing about YOLO is that it lets you move
quickly. Because the whole picture is detected in a single
pass, data can be sent almost instantly in real time, which is
very important for real-time tasks like keeping an eye on
underwater trash in marine settings that are always
changing.

e Accuracy: Mean Average Precision (mAP) is a measure of
how well the model is finding and categorizing things.
YOLO gives you a high MAP. YOLO has a deep
architecture and offers multi-scale potential, allowing it to
detect various object types accurately, from large floating
debris down to small items like bottles and fishing gear.

o Single Inference: YOLO applies detection by thinking
about the image in one inference. The methodology doesn't
inspects each region separately which saves a lot of time.
This aspect of YOLO is crucial for operational
requirements for underwater detection which usually has to
done in relatively tight timescales.

e  Multi-object Detection: YOLO can detect multiple objects
simultaneously in a single image. This ability is essential in
underwater environments where various types of debris
may be present in the same frame, enabling the system to
identify and classify multiple pieces of trash in real-time.

Challenges of YOLO in Underwater Trash Detection

¢ Small Object Detection: One big problem for YOLO is
that it has to be able to find small things. Small pieces of
trash like microplastics can be hard to find underwater,
especially since underwater pictures don't have a lot of
detail. While YOLOvVS8 has made strides in improving small
object detection, underwater trash like microplastics
remains a challenge due to pixel limitations and low
contrast against the background [16].

® Localization Errors: YOLO sometimes struggles with the
accurate localization of objects, especially when they are
overlapping or partially occluded. This issue becomes more
apparent in underwater settings, where light refraction and
murkiness can obscure the true location and shape of
debris. Mislocalization can lead to errors in detection and
classification, affecting the effectiveness of real-time
monitoring systems [17].

FASTER R-CNN
2.2. Network Structure of the Faster RCNN

In general, the Faster RCNN is made up of three main parts:
getting feature information from the input picture, drawing

bounding boxes, classifier classification, and the regressor
adjusting the position of objects. Figure 2 shows the main parts
of the faster RCNN. A picture can be used to teach a
convolutional neural network how to get knowledge about
features. The neural feature information is then sent to the RPN
(area Proposal Network), which makes area proposals. The
regression layer's job is to guess the area plan parameters that
go with the bounding box's reference points. Find out if the thing
inside the box is an object or background. This is the
classification layer's main job. The neural feature map can be
used to connect the RPN-suggested areas to the ones that are
already there to make a ROI. With the sharing process of the
ROI, the mapped ROI areas are then split into blocks of the same
size. Last but not least, the highest sharing action changes the
size of the boxes around each area. Finally, data about the edges
of each area must be sent to the next level of the network, which
is the fully linked layer. When it gets to this layer, the softmax
function can show the label classification score and where the
updated bounding box is [18].
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Fig 7. Network structure diagram of the Faster RCNN.

2.3. Loss Function of the Faster RCNN
For the regional network, bounding box regression loss is part
of the Faster RCNN's loss function. This loss is used for
classification.The other part is classification loss, which
includes loss of bounding box position adjustment at detection.
Equation can be used to describe the Faster RCNN's loss
function [19].

The loss function L is given by:

1 1
L({p:} {t:}) = N, E Las (pipi) + N E 12 Lreg(ti' t;)
cls & reg &

Where:
e iis a list of the anchor numbers in each small set of
data.
e p iis the chance that the ties to things will work as
predicted.



e  One zero equals an object that is not true, and one one
equals an object that is true. That is what p_i** means.

e ) is a measure of weight.

e Ncls is a measure for classification loss.
One of the regression loss parameters is N_reg [20].

Leis(p;, pi) is the logarithmic loss between the object and non-
object, calculated as Lg(p;, p;) = —log[p;ip; + (1 —p;)(1 —
p)]

R is a function named smoothL1(x), as shown in Equation:

0.5x?2 if[x] <1

smoothL1(x) = {|x| — 0.5 otherwise

Where:

®  Lpeg(t;,t]) is the regression loss inside the object
detection, represented as Lyqq (t;, t;) = R(t; — t}),

e t; refers to the predicted coordinates of the object.

e ¢t refers to the true coordinates of the detection object.

e x=t;—t/, where x is the difference between
predicted and actual coordinates.

This equation represents a loss function for training an object
detection model, integrating classification and regression
components, where the regression loss uses the smooth L1 loss
function for more robust prediction of object coordinates.

3. Image Enhancement Techniques

1. Contrast Limited Adaptive Histogram Equalization
(CLAHE)
CLAHE is widely used for underwater image enhancement due
to its ability to improve local contrast in regions where global
histogram equalization would fail to produce satisfactory
results. This technique divides the image into small tiles (or
blocks), processes each tile separately, and then combines them
to create a uniform enhancement. CLAHE is particularly
effective in underwater imaging as it can prevent over-
enhancement in uniformly lit areas and suppress noise
amplification.

How CLAHE Improves Image Quality for Object Detection:

e Local Contrast Enhancement: CLAHE makes
underwater items easier to see by raising the contrast in
small parts of a picture without changing the overall image.
This localized approach ensures that small or faint features
are enhanced without over processing the entire image.

e Noise Suppression: CLAHE reduces the likelihood of
noise amplification. This is essential in murky, low
visibility, underwater photographs in which global
enhancement techniques might also increase noise, leading
to poorer detection.

o Feature Enhancement: With this trick, we can improve
the visibility of small underwater objects, such as debris or
marine life, making it easier for object detection models
like YOLO or Faster R-CNN to classify them correctly.

N

. Denoising and Contrast Enhancement

Underwater images can be distorted due to noise, blur, and low
contrast. To mitigate these problems, there are preprocessing
methods available that aim to improve image quality for object
detection, such as, histogram equalization, linear contrast
adjustment, and denoising methods.

Role of Preprocessing Methods:

e Histogram Equalization: This approach changes the
intensity values to enhance the contrast of an image.
Unfortunately, it can add unwanted noise, particularly in
low-light environments underwater. Commonly modified
techniques of AHE and CLAHE offer improved localized
enhancement.

e Linear Contrast Adjustment: This technique spreads the
pixel values out as much as possible along the intensity
range, which increases contrast; however, it may not work
well when the quality of the image is affected by poor
lighting conditions or color distortion caused by the light
refraction and scattering encountered in the underwater
environment.

¢ Denoising: Denoising methods, such as Gaussian blurring,
median filtering, and wavelet-based methods, serve to
reduce are enhancing clarity in noisy underwater images
while preserving details. A more complex denoise method,
Non-Local Means Denoising, improves the clarity of
images while preserving edges which is important in
properly recognizing objects.

3. Advanced Denoising Techniques for Underwater Imaging

To rectify the problems of noise and blur in underwater
situations, advanced denoising techniques are combined with
contrast enhancement approaches to enable a more robust
preprocessing of underwater images. For example, Bilateral
Filtering, Wavelet Transform, and Non-Local Means have all
been implemented specifically to reduce noise and preserve fine
details (like edges) which is important for object detection.

e Bilateral Filtering: This method smooths images and
preserves edges, thus making it useful for improving the
visibility underwater without blur the item of interest. The
bilateral filter considers both the spatial and intensity
proximity of the pixels to reduce noise without losing the
sharpness of the photo.

e  Wavelet Transform Denoising: The wavelet transform is
a particularly strong denoising technique for underwater
imagery because it breaks down the image into different
frequency bands. The process of denoising can focus on the
high-frequency parts that are noise while getting the low-
frequency parts that are important features, typically
without missing or ruining most of the low-frequency parts.

e Non-Local Means Denoising: Non-Local Means (NLM)
is a complex image-denoising algorithm that compares
each patch to find similar ones in the picture. It does this
while keeping more of the signal's data than other denoising
algorithms. NLM is particularly effective in removing
noise while maintaining the finer textures and details that
underwater environments offer.

4. Challenges in Underwater Trash Detection



Low visibility underwater is one of the biggest challenges for
detecting trash. Water turbidity, variable lighting situations, and
suspended particles can all lead to a decrease in visibility
underwater making things more cloudy and object blur or
motion blur may have a significant effect on the data quality
leading to much lower-quality data, and ultimately poorer
accuracy using detection algorithms. Visibilities may be
converted from bad to worse with the motion blur caused by
water currents. If the water is already disturbed, the natural
disturbance combined with the motion blur makes it difficult for
detection systems to detect things when it can't see them
distictly. Therefore, identifying and classifying the underwater
trash becomes convoluted as many debris objects may appear
warped, half buried, or-all together out of focus from the image
or video data.

Another big problem with finding trash underwater is that there
aren't enough big datasets with labels that can be used to train
deep learning models. Underwater trash detection suffers from
the unavailability of datasets with the quality of datasets used
for many other computer vision tasks. Existing underwater trash
detection datasets often lack quality, comprehensiveness, or a
diversity of marine debris. Other datasets also lack sufficient
annotation for the effective training of models to identify the
various types of trash, which can range in size from large objects
like plastic bottles and fishing gear to smaller items like
microplastics. Unfortunately, not having enough complete and
varied datasets makes models too good at detecting certain types
of debris and makes them less useful in other situations. This
has a big effect on how deep learning models designed for
finding trash underwater are used in all places and conditions.

A fundamental challenge for using an underwater trash
detection system is the capability of processing in real-time with
resource constraints. In situations where processing and power
are restricted, underwater vehicles like remotely operated
vehicles (ROVs) or autonomous underwater vehicles (AUVs)
are often used. The vehicles actually run off of onboard systems,
which can only do so much and, in some cases, put restrictions
on the onboard data. The detection algorithms should be
optimized to allow for rapid processing, since there is little
leeway or tolerance for performance with processing. A
detection algorithm could run the risk of losing detection
opportunity, if not swift enough for processing. Additionally,
the powered vehicle imposes further constraints on processing
computational expense, limiting the use of elaborate models.
Light-weight and efficient algorithms for detection models are
essential if they are to run in real-time with minimal latency.
The algorithms will need to provide instantaneous on-board
results within the power constraints. Without execution of
efficient algorithms, the task of continuous and exhaustive
monitoring of trash underwater becomes impossible especially
in long missions or remote areas with limited opportunity for
recharging or transmitting data.

The future of underwater trash detection using deep learning
algorithms lies in overcoming the existing challenges related to
environmental variability, dataset limitations, real-time
processing, and computational constraints. One major avenue
for future research is the integration of multimodal data,
including sonar, infrared, and acoustic signals, to enhance the
robustness of deep learning models in diverse underwater
conditions. This could mitigate issues caused by water turbidity,
varying light conditions, and refraction that hinder the
performance of visual models. Further advancements in model
architectures, such as hybrid models combining CNNs,
transformers, and attention mechanisms, are also critical for
improving accuracy, particularly in detecting small and
overlapping objects like microplastics. These advancements
will enable models to perform better in the presence of
occlusions and rare debris, leading to better classification and
detection of mocking trash in the water. In addition to this,
larger and more extensive annotated datasets are needed,
especially for smaller debris types. Data augmentation
techniques, encompassing synthetic data generation, and
adversarial learning efforts, can aid in facilitating a lack of data,
which can improve models' capability of generalizing any
environment. Another big problem in underwater trash
recognition is that there aren't many real-time uses. This is
especially true for autonomous underwater vehicles (AUVs)
and remotely controlled vehicles (ROVs). In the future, work
can be focused on making lightweight versions of deep learning
models and improving the model optimization processes so that
they use less power and computer processing while still being
able to identify things within a good range. This could lead to
better continued incorporation of edge computing or cloud
processing to inform real-time detection and analysis. By
addressing these challenges, and seeking these new avenues,
deep-learning algorithms could continue to build on the current
iterations of underwater trash detection systems and contribute
to improved environmental monitoring or marine conservation
initiatives.

In summary, advancements in deep learning algorithms have
greatly improved the quality of underwater trash detection
methods, primarily offering enhancements to existing practices
like sonar or manual inspection. Models like YOLO, Faster R-
CNN and their more recent versions, including YOLOVS have
achieved promising performance with real-time detection and
classification tasks and have proven effective in complex
underwater environments. These algorithms provide very robust
and accurate detection of most marine debris, including both
large floating debris and smaller microplastics, when trained
using large, varied datasets. But there are still problems that
need to be fixed before deep learning can be used to successfully
find trash underwater using pictures of the ocean. processing is
going to be a challenge in terms of computational
Environmental issues, including clarity of the water, variable
light conditions, and surface interference all can affect the
images taken underwater, resulting in detection errors. In
addition, underwater researchers face the problem of acquiring
a large annotated dataset of high quality, especially for small



debris, limiting the ability of any trained model to generalise
across various underwater environments. It will be hard to do
real-time processing because of limited computer power,
especially for unmanned underwater vehicles (AUVs) or ROVs
that are controlled from afar. Despite these sticking points, the
future of underwater trash detection using deep learning is still
promising. Future developments are expected to focus on fusing
multimodal sensor data, optimizing model architectures,
improving augmentations for small object detection and
efficiency; developing lightweight, efficient models that can be
used to enable real-time detection on constrained platforms or
limited computational resources. By fixing these problems,
deep learning algorithms should always be able to make
underwater trash tracking systems more accurate, scalable, and
efficient. This would give more accurate signs of protecting the
oceans and reducing pollution.
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