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1. INTRODUCTION 

Marine pollution, and the increasing prevalence of trash 

underwater, is one of the most serious environmental challenges 

today. The rapid accumulation of plastics and debris in aquatic 

ecosystems represents a clear threat to marine biodiversity, 

disrupts ecological systems, and threatens the health of aquatic 

organisms. Plastics will remain in marine environments for a 

long time due to their durability, thereby inducing long-term 

ecological effects. The annual estimate of 8 million metric 

tonnes of plastic trash entering the oceans continues to add to 

the concerns of marine pollution [1]. Marine debris—in 

particular plastics—seriously impacts marine species through 

ingestion, entanglement, and disruption of habitat. Plastic waste 

is claimed to kill millions of marine animals every year. And, 

when it enters food chains, it can negatively affect human health 

[2]. Solving this challenge requires efficient and real-time 

identification and classification systems that detect and classify 

marine debris. Efficient and accurate identification of marine 

debris is crucial for conservation efforts that promote and 

protect marine habitats, as well as minimizing impact and harm 

to the environment. 
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Fig. 1 Underwater Trash Detection in Marine Environments 

[3] 

Conventional methods for monitoring marine debris, including 

sonar-based systems and physical inspections of sites, come 

with considerable limitations given lower visibility in deep or 

turbid waters. These methods usually do not have the scalability 

or accuracy available for operations in real-time or on a larger 

computational scale. To this end, deep learning techniques have 

been an intriguing method to automatically search for debris. 

Convolutional neural networks (CNNs) and advanced systems 

such as YOLO (You Only Look Once) or Faster R-CNN have 

made a lot of progress in works involving locating objects and 

classifying [4]. 
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There are some problems with using deep learning to find debris 

underwater, even though these models had high mean average 

precision (mAP) scores and real-time detection speeds when 

tested on larger datasets like the Trash Can dataset. They will 

probably work well for keeping an eye on trash in underwater 

environments. The underwater environment is variable by 

nature; environmental features may alter water clarity, change 

lighting, and disturb the surface (e.g proximity to boat traffic or 

weather), leading to distortion in the images and reduced 

accuracy in detection models. In addition to limitations of the 

underwater system, the availability of data, specifically for 

micro plastics, and data imbalance, where categories of debris 

can be frequently larger than other types, will complicate the 

process of building strong and accurate models [5]. These 

limitations hinder the generalization of deep learning models 

across diverse underwater environments and further complicate 

the detection of rare debris types. 

Even with these barriers, deep learning models continue to show 

great potential for underwater trash detection. The future will 

involve working to overcome these shortcomings using 

advanced data augmentation, improved model architectures, 

and multimodal sensor data, like sonar, to assure detection 

accuracy in all types of environments [6]. 

Furthermore, improvements in real-time processing systems 

and computational efficiencies will be pivotal to ensure these 

models operate successfully in the marine environments in the 

real world. This paper provided a complete summary of the most 

recent deep learning models in detecting underwater debris and 

shows advancements in the field with the challenges that remain 

to make detection more accurate and scalable in the future. 

2. Deep Learning Algorithms for Underwater Trash 

Detection 

One area of neural networks that gets a lot of attention is deep 

learning. You can think of neural networks as the building 

blocks of deep learning systems. A "deep" neural network is one 

that has more than three layers of nodes [7]. 

A deep neural network is put together in Figure 2. Some of the 

levels are hidden, and there is only one exit layer. Most of the 

time, deep neural networks work in a way called "feed-

forward." This means that the data only moves from the entry 

layer to the exit layer. It is also possible for data to go from the 

output layer to the input layer and back again. This process is 

known as back spread. When we use back propagation to train 

the deep learning model, we can find the mistake in every cell. 

We can now change the way we do things to get better results. 

 

Fig 2. Neural Network Architecture [8] 

In Figure 2, you can see how the Neural Network works. This 

network is made up of three main parts. There is an output layer, 

a secret area, and an entry area. 

• Input layer: The first neural layer's input layer is in charge 

of bringing in the first data so that it can be processed by 

the layers that follow. 

• Hidden layer: This is the second kind of layer, and there 

may be one or more of them in neural networks for high 

efficiency and complexity. They do many things at once, 

like changing data and making features automatically. 

After that, the information is sent to the next layer to be 

handled further. 

• Output layer: In the last step, projections are found that 

meet the needs. Many layers of nodes are connected to each 

other to make up an artificial neural network. These layers 

are called "node layers," and they work a lot like the brain's 

neural network. 

As you can see in Figure 2.1, a neural network usually has one 

input layer, one or more hidden layers, and one output layer. No 

matter how the program is built, the number of secret layers may 

change. The number of input and output levels stays the same. 

Each of the linked nodes, which are also called neurones, has a 

weight and a cutoff that go with it. When the output value of a 

neurone is higher than a certain cutoff number, that neurone is 

turned on. When a neurone is triggered, it sends data to the next 

layer of the network [18]. If the chosen neural network has more 

than one working layer, the steps above are done more than once 

to get a single result. The results from the processing stages are 

used as sources to figure out the neural network's end output. 

They change the weights of the neurons in this step to make the 

neural network as accurate as possible. The buried layers are 

also known as processing layers. The secret layers then handle 

the collected data in this way to get correct features or 

classifications. 

1. YOLO  

YOLO, which stands for "You Only Look Once," is one of the 

best known deep learning models for finding things in real 



 

time." Because of how it's built, YOLO can identify different 

kinds of objects in a single pass over a picture. This means that 

it can be used for real-time analysis and is useful for any quick 

task, like finding trash underwater. From YOLOv3 to YOLOv4 

and now to YOLOv8, YOLO has gotten faster, more accurate, 

and better at finding items of different sizes. This makes it the 

best choice for real-time recognition in tough settings like seas 

and marine ecosystems. 

YOLOv3 (2018) 

YOLOv3 was a major improvement over previous versions, 

contributing to improved speed and accuracy in the detection. 

An important element of YOLOv3 was adopting a deeper 

network architecture with residual connections that improved 

accuracy at feature extraction. Multi-scale forecasts were also 

used by YOLOv3 to find items of different sizes and forms that 

were moving through a single picture.These capabilities are 

especially pertinent in underwater environments, where 

different kinds of debris, such as plastic waste can be identified 

despite challenges like changing levels of water clarity and light 

refractions [9].  

YOLOv4 (2020) 

YOLOv4 was launched in 2020 and was designed with several 

optimizations to better use performance on both GPU and CPU 

systems to fit a wider array of hardware. To make it easier to 

find, YOLOv4 used methods like the Mish activation function, 

weighted leftover links, and the CSPDarknet53 backbone.The 

model was particularly optimized for use on large datasets, 

allowing it to process high-resolution images in real-time. 

YOLOv4’s ability to perform accurate object detection while 

maintaining computational efficiency made it ideal for 

underwater trash detection, where large volumes of 

environmental data need to be processed rapidly. YOLOv4’s 

versatility in both hardware configurations and detection 

performance marked a significant step forward [10] . 

Overview of YOLOv5 

The new way we find targets underwater is based on what we 

talked about when we talked about the general structure or 

model structure of YOLOv5. In 2020, Glenn Jocher put out this 

record. YOLOv5 adds to the model framework of the YOLO 

series programs that came before it. 

1. Proposed Model 

This section talks about the better YOLOv5 underwater target 

recognition method. Figure 3 shows that we started by 

processing the data, which meant that we cleaned it up and gave 

it names. After that, the better YOLOv5 network was used to 

increase the accuracy of the model recognition. Specifically, we 

created a fresh backbone network for YOLOv5 that is based on 

the Swin transformer. Additionally, we offered a better way to 

combine features from different scales, and by using various 

detection levels, we improved the confidence loss function. 

 

Fig 3. The improved YOLOv5 is used for underwater target 

detection. 

2. Backbone Network Based on Swin Transformer 

Images taken underwater during tracking are affected by the fact 

that water doesn't let all light through. This hides the targets that 

have been found, making it hard for the monitor to tell them 

apart. So, during the detecting process, the features of the targets 

that are being looked for should stand out more than the features 

that are in the background [11]. Paying attention to yourself is a 

good approach. Change Changer replaces the recurrent layers 

that are usually used in encoder-decoder designs with multi-

headed self-attention, which works well in the field of natural 

language processing [12]. Transformer was first used in the 

picture world by Changer of Vision. TPH-YOLOv5 The 

forecast header now has Transformer encoder blocks instead of 

some of the convolution blocks or CSP bottleneck blocks that 

were in the first version of YOLOv5. These blocks helped us 

find targets in scenes where UAVs were used. When 

Transformer is used directly in the area of computer vision, 

there are two problems. (1) In both areas, the feature sizes used 

are different. It doesn't change when you do natural language 

processing. The feature size changes a lot in computer vision, 

though. Natural language processing doesn't need as high of a 

resolution as computer vision does. Also, using Transformer 

directly in computer vision can be hard on the computer because 

it uses the square of the picture resolution. Also, underwater 

devices don't have a lot of computing power, so Transformer 

can't be used to find targets underwater. 

Swin Transformer is a successful way to use self-attention in 

computer vision, and it's better than earlier work in the 

following ways [13]: We are going to talk about three things: 

(1) a method used by CNN to build a hierarchical Transformer; 

(2) the idea of locality to do self-attention calculations within 

the window region without overlap; and (3) a shifted window 

partitioning method to make the window-based self-attention 

module connection work. Based on the work above, the 

processing difficulty goes up linearly with the size of the 

original picture. As the level goes up, picture blocks are slowly 

put together to make a Transformer that can be used for anything 

as a visual network that holds everything together. 

Figure 4 shows how the front end of the network that was made 

on the Swin Transformer is put together. Patch division and 

linear embedding are the two parts that make up patch 



 

embedding. The feature-map module is split into small pieces 

that don't touch each other. The input features are then put into 

any number of dimensions using linear embedding. This block 

is made up of W-MSA (window multi-head self-attention) and 

SW-MSA (shifted-window multi-head self-attention). It's easier 

to do the math with the W-MSA because it splits the feature 

map, and data can move between screens with the SW-MSA. 

Patch joining is used to reduce the size of the raw feature map. 

The first step is to give the patch embedding module the original 

c h a w feature map. The feature map is then broken up into 

small pieces that don't touch each other to make a 96 × (h/4) × 

(w/4) feature map. First, this map is put into two stacked Swin 

Transformer block modules. This makes a new 96 × (h/4) × 

(w/4) feature map. Next, feature maps 3, 4, and 5 are made with 

the help of three patch merging levels and the Swin Transformer 

blocks. Five feature maps are fed into the FPN (feature pyramid 

networks) section's neck. There are three of them: 3, 4, and 5. 

This picture (Figure 5) shows how YOLOv5 is put together 

when Swin Transformer is the main network. 

 

Fig 4. The Swin Transformer architecture [14]. 

 

Fig 5. The structure of YOLOv5 using Swin Transformer as 

the backbone network. 

YOLOv8 (2021) 

YOLOv8 is the most recent version in the YOLO family, and it 

includes a few useful advancements in occlusion handling, 

learning multi-scale features, and processing speed. YOLOv8 

has been optimized to detect smaller items, which is especially 

helpful in detecting trash under water when you are detecting 

microplastics and smaller detritus, as these types of trash can be 

particularly hard to detect. YOLOv8 can accommodate 

processing the changes in visual representation related to 

dynamic and messy under water environments in which many 

different kinds of trash and debris are within the same frame. 

Because it can work with bigger datasets and is faster, YOLOv8 

is without a doubt one of the best tools for real-time underwater 

trash recognition apps. 

1. YOLOv8 Network Architecture 

YOLO is a popular real-time object detection system, initially 

developed by Joseph Redmon and others in 2016. YOLO 

network architecture is based on classifying and detecting 

objects in a single pass, as compared to many earlier 

frameworks that revered object localization by classifying 

images in multiple passes. The development of YOLO was a 

disruptive innovation for the computer vision space, and it is 

exceptionally fast and efficient at detection. In January 2023, 

Ultralytics launched YOLOv8, which marked a new generation 

of YOLO technology. YOLOv8 comes in different forms that 

can be used for different visual jobs. YOLOv8 has a backbone 

network that is similar to YOLOv5, and it also has a new module 

called C2f that recalls traits in a context to improve recognition. 

Figure 1 shows how YOLOv8 is put together. From picture 

processing to recognition output, the flow is shown in the figure. 

The first step is visual input data, the visual input will be pre-

processed, using model-selective augmentation and resizing 

methods. When the model receives the image for feature 

detection, the pre-processed image will have gone through 

several pre-processing techniques. This is the main job of the 

machine: feature extraction. After the picture has been pre-

processed, it is sent to the backbone network. 

 

Fig 6: YOLOv8 Network Architecture [15] 

The neck of the network is where the central feature extraction 

unit links the extracted features in a single extended channel. 

The architecture of the network with the neck configuration is 

designed to detect features at three different scales (small - 20 x 



 

20, medium - 40 x 40, large-80 x 80), optimizing the detail of 

the required features of the differing sizes of the object. The last 

aspect of this cycle is the use of this multi scale outputs which 

are determined by the aspect of the features examined in the 

head of the network, which is an important step of the detection 

result, in deciding how to bring the promissing features together 

as a showcase of the detection potential of the YOLOv8 

network. 

Advantages of YOLO for Underwater Trash Detection 

• Speed: One great thing about YOLO is that it lets you move 

quickly. Because the whole picture is detected in a single 

pass, data can be sent almost instantly in real time, which is 

very important for real-time tasks like keeping an eye on 

underwater trash in marine settings that are always 

changing. 

• Accuracy: Mean Average Precision (mAP) is a measure of 

how well the model is finding and categorizing things. 

YOLO gives you a high MAP. YOLO has a deep 

architecture and offers multi-scale potential, allowing it to 

detect various object types accurately, from large floating 

debris down to small items like bottles and fishing gear. 

• Single Inference: YOLO applies detection by thinking 

about the image in one inference. The methodology doesn't 

inspects each region separately which saves a lot of time. 

This aspect of YOLO is crucial for operational 

requirements for underwater detection which usually has to 

done in relatively tight timescales. 

• Multi-object Detection: YOLO can detect multiple objects 

simultaneously in a single image. This ability is essential in 

underwater environments where various types of debris 

may be present in the same frame, enabling the system to 

identify and classify multiple pieces of trash in real-time. 

Challenges of YOLO in Underwater Trash Detection 

• Small Object Detection: One big problem for YOLO is 

that it has to be able to find small things. Small pieces of 

trash like microplastics can be hard to find underwater, 

especially since underwater pictures don't have a lot of 

detail. While YOLOv8 has made strides in improving small 

object detection, underwater trash like microplastics 

remains a challenge due to pixel limitations and low 

contrast against the background [16]. 

• Localization Errors: YOLO sometimes struggles with the 

accurate localization of objects, especially when they are 

overlapping or partially occluded. This issue becomes more 

apparent in underwater settings, where light refraction and 

murkiness can obscure the true location and shape of 

debris. Mislocalization can lead to errors in detection and 

classification, affecting the effectiveness of real-time 

monitoring systems [17].   
 
 FASTER R-CNN  

2.2. Network Structure of the Faster RCNN 

In general, the Faster RCNN is made up of three main parts: 

getting feature information from the input picture, drawing 

bounding boxes, classifier classification, and the regressor 

adjusting the position of objects. Figure 2 shows the main parts 

of the faster RCNN. A picture can be used to teach a 

convolutional neural network how to get knowledge about 

features. The neural feature information is then sent to the RPN 

(area Proposal Network), which makes area proposals. The 

regression layer's job is to guess the area plan parameters that 

go with the bounding box's reference points. Find out if the thing 

inside the box is an object or background. This is the 

classification layer's main job. The neural feature map can be 

used to connect the RPN-suggested areas to the ones that are 

already there to make a ROI. With the sharing process of the 

ROI, the mapped ROI areas are then split into blocks of the same 

size. Last but not least, the highest sharing action changes the 

size of the boxes around each area. Finally, data about the edges 

of each area must be sent to the next level of the network, which 

is the fully linked layer. When it gets to this layer, the softmax 

function can show the label classification score and where the 

updated bounding box is [18]. 

 

Fig 7. Network structure diagram of the Faster RCNN. 

2.3. Loss Function of the Faster RCNN 

For the regional network, bounding box regression loss is part 

of the Faster RCNN's loss function. This loss is used for 

classification.The other part is classification loss, which 

includes loss of bounding box position adjustment at detection. 

Equation can be used to describe the Faster RCNN's loss 

function [19]. 

The loss function 𝐿 is given by: 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠

∑𝐿𝑐𝑙𝑠
𝑖

(𝑝𝑖 , 𝑝𝑖
∗) +

1

𝑁𝑟𝑒𝑔

∑𝑝𝑖
∗

𝑖

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) 

Where: 

• i is a list of the anchor numbers in each small set of 

data.  

• p_i is the chance that the ties to things will work as 

predicted.  



 

• One zero equals an object that is not true, and one one 

equals an object that is true. That is what p_i^* means. 

• λ is a measure of weight. 

• N_cls is a measure for classification loss.  

One of the regression loss parameters is N_reg [20]. 

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) is the logarithmic loss between the object and non-

object, calculated as 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) = −log[𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 −

𝑝𝑖)] 

𝑅 is a function named smoothL1(x), as shown in Equation: 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2 if |𝑥| < 1
|𝑥| − 0.5 otherwise

 

Where: 

• 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) is the regression loss inside the object 

detection, represented as 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗), 

• 𝑡𝑖 refers to the predicted coordinates of the object. 

• 𝑡𝑖
∗ refers to the true coordinates of the detection object. 

• 𝑥 = 𝑡𝑖 − 𝑡𝑖
∗, where 𝑥 is the difference between 

predicted and actual coordinates. 

This equation represents a loss function for training an object 

detection model, integrating classification and regression 

components, where the regression loss uses the smooth L1 loss 

function for more robust prediction of object coordinates. 

3. Image Enhancement Techniques 

1. Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

CLAHE is widely used for underwater image enhancement due 

to its ability to improve local contrast in regions where global 

histogram equalization would fail to produce satisfactory 

results. This technique divides the image into small tiles (or 

blocks), processes each tile separately, and then combines them 

to create a uniform enhancement. CLAHE is particularly 

effective in underwater imaging as it can prevent over-

enhancement in uniformly lit areas and suppress noise 

amplification. 

How CLAHE Improves Image Quality for Object Detection: 

• Local Contrast Enhancement: CLAHE makes 

underwater items easier to see by raising the contrast in 

small parts of a picture without changing the overall image. 

This localized approach ensures that small or faint features 

are enhanced without over processing the entire image. 

• Noise Suppression: CLAHE reduces the likelihood of 

noise amplification. This is essential in murky, low 

visibility, underwater photographs in which global 

enhancement techniques might also increase noise, leading 

to poorer detection. 

• Feature Enhancement: With this trick, we can improve 

the visibility of small underwater objects, such as debris or 

marine life, making it easier for object detection models 

like YOLO or Faster R-CNN to classify them correctly. 

2. Denoising and Contrast Enhancement 

Underwater images can be distorted due to noise, blur, and low 

contrast. To mitigate these problems, there are preprocessing 

methods available that aim to improve image quality for object 

detection, such as, histogram equalization, linear contrast 

adjustment, and denoising methods. 

Role of Preprocessing Methods: 

• Histogram Equalization: This approach changes the 

intensity values to enhance the contrast of an image. 

Unfortunately, it can add unwanted noise, particularly in 

low-light environments underwater. Commonly modified 

techniques of AHE and CLAHE offer improved localized 

enhancement. 

• Linear Contrast Adjustment: This technique spreads the 

pixel values out as much as possible along the intensity 

range, which increases contrast; however, it may not work 

well when the quality of the image is affected by poor 

lighting conditions or color distortion caused by the light 

refraction and scattering encountered in the underwater 

environment. 

• Denoising: Denoising methods, such as Gaussian blurring, 

median filtering, and wavelet-based methods, serve to 

reduce are enhancing clarity in noisy underwater images 

while preserving details. A more complex denoise method, 

Non-Local Means Denoising, improves the clarity of 

images while preserving edges which is important in 

properly recognizing objects. 

3. Advanced Denoising Techniques for Underwater Imaging 

To rectify the problems of noise and blur in underwater 

situations, advanced denoising techniques are combined with 

contrast enhancement approaches to enable a more robust 

preprocessing of underwater images. For example, Bilateral 

Filtering, Wavelet Transform, and Non-Local Means have all 

been implemented specifically to reduce noise and preserve fine 

details (like edges) which is important for object detection. 

• Bilateral Filtering: This method smooths images and 

preserves edges, thus making it useful for improving the 

visibility underwater without blur the item of interest. The 

bilateral filter considers both the spatial and intensity 

proximity of the pixels to reduce noise without losing the 

sharpness of the photo. 

• Wavelet Transform Denoising: The wavelet transform is 

a particularly strong denoising technique for underwater 

imagery because it breaks down the image into different 

frequency bands. The process of denoising can focus on the 

high-frequency parts that are noise while getting the low-

frequency parts that are important features, typically 

without missing or ruining most of the low-frequency parts. 

• Non-Local Means Denoising: Non-Local Means (NLM) 

is a complex image-denoising algorithm that compares 

each patch to find similar ones in the picture. It does this 

while keeping more of the signal's data than other denoising 

algorithms. NLM is particularly effective in removing 

noise while maintaining the finer textures and details that 

underwater environments offer. 

4. Challenges in Underwater Trash Detection 



 

1. Low Visibility and Motion Blur 

Low visibility underwater is one of the biggest challenges for 

detecting trash. Water turbidity, variable lighting situations, and 

suspended particles can all lead to a decrease in visibility 

underwater making things more cloudy and object blur or 

motion blur may have a significant effect on the data quality 

leading to much lower-quality data, and ultimately poorer 

accuracy using detection algorithms. Visibilities may be 

converted from bad to worse with the motion blur caused by 

water currents. If the water is already disturbed, the natural 

disturbance combined with the motion blur makes it difficult for 

detection systems to detect things when it can't see them 

distictly. Therefore, identifying and classifying the underwater 

trash becomes convoluted as many debris objects may appear 

warped, half buried, or-all together out of focus from the image 

or video data. 

2. Dataset Limitations 

Another big problem with finding trash underwater is that there 

aren't enough big datasets with labels that can be used to train 

deep learning models. Underwater trash detection suffers from 

the unavailability of datasets with the quality of datasets used 

for many other computer vision tasks. Existing underwater trash 

detection datasets often lack quality, comprehensiveness, or a 

diversity of marine debris. Other datasets also lack sufficient 

annotation for the effective training of models to identify the 

various types of trash, which can range in size from large objects 

like plastic bottles and fishing gear to smaller items like 

microplastics. Unfortunately, not having enough complete and 

varied datasets makes models too good at detecting certain types 

of debris and makes them less useful in other situations. This 

has a big effect on how deep learning models designed for 

finding trash underwater are used in all places and conditions. 

3. Real-time Processing and Resource Constraints 

A fundamental challenge for using an underwater trash 

detection system is the capability of processing in real-time with 

resource constraints. In situations where processing and power 

are restricted, underwater vehicles like remotely operated 

vehicles (ROVs) or autonomous underwater vehicles (AUVs) 

are often used. The vehicles actually run off of onboard systems, 

which can only do so much and, in some cases, put restrictions 

on the onboard data. The detection algorithms should be 

optimized to allow for rapid processing, since there is little 

leeway or tolerance for performance with processing. A 

detection algorithm could run the risk of losing detection 

opportunity, if not swift enough for processing. Additionally, 

the powered vehicle imposes further constraints on processing 

computational expense, limiting the use of elaborate models. 

Light-weight and efficient algorithms for detection models are 

essential if they are to run in real-time with minimal latency. 

The algorithms will need to provide instantaneous on-board 

results within the power constraints. Without execution of 

efficient algorithms, the task of continuous and exhaustive 

monitoring of trash underwater becomes impossible especially 

in long missions or remote areas with limited opportunity for 

recharging or transmitting data. 

2.  FUTURE SCOPE 

The future of underwater trash detection using deep learning 

algorithms lies in overcoming the existing challenges related to 

environmental variability, dataset limitations, real-time 

processing, and computational constraints. One major avenue 

for future research is the integration of multimodal data, 

including sonar, infrared, and acoustic signals, to enhance the 

robustness of deep learning models in diverse underwater 

conditions. This could mitigate issues caused by water turbidity, 

varying light conditions, and refraction that hinder the 

performance of visual models. Further advancements in model 

architectures, such as hybrid models combining CNNs, 

transformers, and attention mechanisms, are also critical for 

improving accuracy, particularly in detecting small and 

overlapping objects like microplastics. These advancements 

will enable models to perform better in the presence of 

occlusions and rare debris, leading to better classification and 

detection of mocking trash in the water. In addition to this, 

larger and more extensive annotated datasets are needed, 

especially for smaller debris types. Data augmentation 

techniques, encompassing synthetic data generation, and 

adversarial learning efforts, can aid in facilitating a lack of data, 

which can improve models' capability of generalizing any 

environment. Another big problem in underwater trash 

recognition is that there aren't many real-time uses. This is 

especially true for autonomous underwater vehicles (AUVs) 

and remotely controlled vehicles (ROVs). In the future, work 

can be focused on making lightweight versions of deep learning 

models and improving the model optimization processes so that 

they use less power and computer processing while still being 

able to identify things within a good range. This could lead to 

better continued incorporation of edge computing or cloud 

processing to inform real-time detection and analysis. By 

addressing these challenges, and seeking these new avenues, 

deep-learning algorithms could continue to build on the current 

iterations of underwater trash detection systems and contribute 

to improved environmental monitoring or marine conservation 

initiatives. 

3. CONCLUSION  

In summary, advancements in deep learning algorithms have 

greatly improved the quality of underwater trash detection 

methods, primarily offering enhancements to existing practices 

like sonar or manual inspection. Models like YOLO, Faster R-

CNN and their more recent versions, including YOLOv8 have 

achieved promising performance with real-time detection and 

classification tasks and have proven effective in complex 

underwater environments. These algorithms provide very robust 

and accurate detection of most marine debris, including both 

large floating debris and smaller microplastics, when trained 

using large, varied datasets. But there are still problems that 

need to be fixed before deep learning can be used to successfully 

find trash underwater using pictures of the ocean. processing is 

going to be a challenge in terms of computational 

Environmental issues, including clarity of the water, variable 

light conditions, and surface interference all can affect the 

images taken underwater, resulting in detection errors. In 

addition, underwater researchers face the problem of acquiring 

a large annotated dataset of high quality, especially for small 



 

debris, limiting the ability of any trained model to generalise 

across various underwater environments. It will be hard to do 

real-time processing because of limited computer power, 

especially for unmanned underwater vehicles (AUVs) or ROVs 

that are controlled from afar. Despite these sticking points, the 

future of underwater trash detection using deep learning is still 

promising. Future developments are expected to focus on fusing 

multimodal sensor data, optimizing model architectures, 

improving augmentations for small object detection and 

efficiency; developing lightweight, efficient models that can be 

used to enable real-time detection on constrained platforms or 

limited computational resources. By fixing these problems, 

deep learning algorithms should always be able to make 

underwater trash tracking systems more accurate, scalable, and 

efficient. This would give more accurate signs of protecting the 

oceans and reducing pollution. 
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