ISSN: 2584-0495

NIMIT

International Journal of International Journal of Microsystems and loT

Microsystems and IoT

Vol. 3, Issue 3, pp. 1614-1620

ISSN: (Online) Journal homepage: https://www.ijmit.org

Al-Powered GitHub Repository Summarizer with CrewAl:
Automating Codebase Analysis

Suman Patel, Kanchan Bala and Mohammad Aknan

Cite as: Patel, S., Bala, K., & Mohammad, A. (2025). Al-Powered GitHub Repository
Summarizer with CrewAl: Automating Codebase Analysis. International Journal of
Microsystems and IoT, 3(3), 1614-1620. https://doi.org/10.5281/zenodo.18146441

8 © 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

@ Published online: 10 March 2025

@ Submit your article to this journal: =

||I| Article views:

=
h
. . =
View related articles:
=, View Crossmark data: &

=
.|
oy M

Cr wrk

https://doi.org/10.5281/zenodo.18146441

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18146441
https://doi.org/10.5281/zenodo.18146441
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1614

International Journal of Microsystems and IoT @1
Vol.3, Issue 3, pp.1614-1620; DOI: https://doi.org/10.5281/zenodo.18146441 ﬁ 'é

Al-Powered GitHub Repository Summarizer with CrewAl: Automating Codebase @ cxsses]
Analysis

Suman Patel', Kanchan Bala! and Mohammad Aknan®

"Department of Computer Science & Engineering, Gaya College of Engineering, Gaya, Bihar, India
2Department of Computer Science & Engineering, Motihari College of Engineering, Motihari, Bihar, India.

ABSTRACT

Manually reviewing large and complicated codes is time-consuming and labor-intensive. It takes a lot
of time and effort to read huge and complex code projects and understand them. Such an effort is a
time-consuming and not efficient process. Modern software contains thousands of files; hence, it is very
difficult to understand its architecture, features, and key components easily. To address these
challenges, there is a need for an automated system that can summarize, clone, and analyze GitHub
repositories. Such a system should be capable of handling large and complex repositories while
reducing the amount of human effort required. This paper presents an automated solution using a multi-
agent system powered by Crew Al to summarize and analyze GitHub repositories. This system employs
specialized agents that collaboratively clone repositories, parse key files (e.g., README, source code),
and extract relevant functional and architectural insights. The backend is implemented in Python, using
GitPython for repository management and large language models via OpenAl for semantic analysis.
These agents operate in parallel to perform source code inspection, document analysis, and report
generation. The output is human-readable, easily understandable, and structured, presented in multiple
formats, such as PDF, Markdown, or JSON. This framework significantly reduces manual efforts and
enables the creation of a scalable codebase understanding, making it a practical tool for developers,
researchers, and automated documentation pipelines.

KEYWORDS

Code summarization; Crew Al;
GitHub analysis; multi-agent
systems; repository mining;
automation; software architecture

1. INTRODUCTION

Platforms like GitHub host millions of projects, ranging from
small utilities to highly complex frameworks. It consists of
thousands of files. Understanding, which is often a challenging
task, because this requires developers to manually check the
documentation, review the source code, and identify its
architecture. We suggest making use of the code's developer-
assigned identifiers. In order to make the code easier to read,
developers often use informative identifiers while developing
programs. This helps to maintain rich code semantics [20].
Iterative prompt refinement using manual prompt engineering
methodologies, such Chain-of Thought (CoT) reasoning,
necessitates a substantial amount of human labor.

This work introduces a GitHub Repository Summarizer
developed using Crew Al, a framework that supports
collaborative agents. The system is able to clone repositories,
locate the most relevant files, and use specialized agents to
examine both documentation and source code. The analysis is
then organized into a structured summary that outlines project
features, architecture, and core modules. The framework makes
use of Python for backend processing, GitPython for repository
handling, and advanced language models for semantic analysis,
enabling it to provide precise and concise overviews of
complex software projects.

The main goal of this work is to give developers and researchers
a practical tool that reduces the effort required to manually go
through large codebases, while also improving their
understanding and overall productivity. Unlike the usual
methods, this system not only speeds up the analysis process
but also provides results in different formats, making it easy to
use within larger automated workflows. This approach supports
the advancement of modern software engineering by showing
how smart, collaborative systems can simplify repository
exploration and make development tasks more efficient.

Subjective bias and scalability problems plague this time-
consuming procedure, making it challenging to generalize
across a variety of jobs [21]. Automatic code summarization
systems have become widely used as a result of these
developments, improving code readability, maintainability, and
comprehension in general [22]. In contrast to earlier methods
that used conventional models for code summarization, pre-
trained language models (PLMs) provide a multitude of past
knowledge that is ingrained in their parameters and obtained
during the lengthy pre-training stage [23]. This process is not

In the present era, open-source development and software
repositories are growing at unprecedented levels.

© 2025 The Author(s). Published by ISVE, Ranchi, India

only time-consuming but also requires significant technical
expertise.

Open-source software has fundamentally changed how we
view the software development process [1]. GitHub is a widely
used platform for hosting code that works with Git for source

https://doi.org/10.5281/zenodo.18146441

code management. In addition to storing software projects, it
also brings in the social side of development. Every user on
GitHub has a public profile, and their activities can be seen and
followed by others in the community. This way of linking a
developer’s identity with their work and contributions makes
GitHub stand out from other platforms [2]. The bulk of
projects are freely shared with the world via GitHub, the
biggest open source software marketplace. One or more
README.MD files are included with every GitHub
repository to offer basic information about the repository, such
as help, instructions, or information on updates, to mention a
few. To represent information in an understandable manner,
such a file is presented in the Markdown format [18].

More than 420 million repositories, including at least 28
million public repositories, and more than 100 million
developers were listed on GitHub as of January 2023. As of
June 2023, it is the biggest source code host in the world [16].

Git's capability is expanded by GitHub, which provides a
centralized platform with a number of collaboration tools.
Because it offers repository hosting, managing, sharing, and
storing data is simple. Git repositories Strong collaboration
features like pull requests, problems, and project boards are also
included in GitHub, which facilitate team communication and
let engineers debate and examine changes before incorporating
them into the main source. GitHub allows teams to automate
testing, deployment, and other processes right within the
platform by integrating with CI/CD (Continuous Integration and
Continuous Deployment) technologies platform [26].

In the industry, automated code review solutions are becoming
more and more popular [3]. However, there is limited practical
evidence about the real advantages of these tools. For instance,
while automated reviews may appear to save time, they can
also create new issues that reduce this benefit. Likewise, the
savings from lowering developer effort may not be significant
when compared to the expenses involved in maintaining and
running such tools [13]. Developers take the time to
comprehend the work of other developers and its position
within the project in order to do a code review [14]. We
suggest making use of the code's developer-assigned
identifiers. In order to make the code easier to read, developers
often use informative identifiers while developing programs.
This helps to maintain rich code semantics [19].

Developers invest effort in comprehending the code update,
searching for errors, and identifying performance snags or
general departures from coding standards in order to produce
code reviews. Several attempts have been made to give code
reviews using pre-trained models [15]. Research on automatic
code summarization is growing quickly. Programmers are
known for ignoring the labor-intensive process of creating their
own summaries, and automation has long been mentioned as a
preferable substitute [17].

2. PROBLEM STATEMENT

2.1 Time consuming:

1615

When a software project grows large, it often contains
thousands of files, with each file having hundreds or even
thousands of lines of code. To understand such a project, a
developer usually has to open file after file, read through the
logic, follow how different functions interact, and connect this
information to the overall structure of the system. This process
is slow because code is often spread across multiplefolders,
written in different programming languages, and may not
always be documented clearly.

2.2 Inefficient and scalability issue:

Developers usually look for an overall understanding of how a

project works such as its main modules, workflows, and
dependencies without needing to read every single line of code.
However, in practice they often end up scanning through
thousands of lines spread across many files just to piece together
that bigger picture, which wastes time and energy. This becomes
even harder when teams handle several repositories at once,
because the same slow, manual process has to be repeated for
each one. As the number of repositories grows, this approach
quickly becomes unmanageable, making it difficult to keep up
with the pace of development.

3. OBJECTIVES

Building a system that can automatically replicate and analyze
the contents of public GitHub repositories is the primary
objective of this study. It collects useful information from
documentation, source code, and configuration files, while
dividing the work into smaller, organized steps to make the
process more efficient. Using the collected details, the system
prepares a clear and structured summary of the project. The final
results are provided in multiple formats such as PDF, JSON, or
Markdown, making them convenient for use in different
environments and workflows.

4. Methodology

This work's methodology is based on a structured pipeline that
automates repository analysis and summary. To make a local
working copy, GitHub repositories were first gathered and
cloned. README, documentation, and source code were found
to be the main project files used for analysis. Project
descriptions and background information were extracted using
a documentation reader module, and the program architecture
and functional elements were analyzed using a code analyzer.
After the insights were retrieved, a summary writer module
combined them to create a logical overview of the repository.
Following processing, the data was organized into structured
reports and exported in a variety of formats, including
Markdown, JSON, and PDF, to guarantee accessibility and
simplicity of distribution.

The study was conducted using a set of precise procedures. For
local access to the files, GitHub repositories were first cloned.
The README, documentation, and source code were then
identified as important files. After that, the source code was
examined to learn about its structure and functionality, and the
documentation was studied to comprehend the project. This data
was gathered, and a summary that synthesized the results into

an understandable project description was produced. The results
were finally transformed into reports, which were then
published in Markdown, JSON, and PDF forms. This
methodical approach guarantees dependable results and makes
the process easy to replicate.

The study used an organized but simple procedure to evaluate
and compile GitHub repositories.

The strategy is guaranteed to be scalable, repeatable, and able to
yield consistent results across many repositories thanks to this
standardized process.

Start: User provides GitHub URL

]

Clone Repository {CloneRepoTask)

]

List Important Files (README, source code, docs)

]

Repo Reader Agent: Reads documentation

|

Code Analyzer Agent: Analyzes source code

]

Summary Writer Agent: Creates project summary

]

Generate Final Report (FinalReportTask)

]

QOutput: PDF / JSON / Markdown

|

End

Fig. 1 Workflow of the System

Figure 1 illustrates the system's sequential operation, beginning
with a user-provided GitHub URL. Agents read the source code
and documentation after cloning the repository and identifying
the important files. The results of this analysis are used to build
a summary, which is then used to create a full report that gives
a clear overview of the project in formats like PDF, JSON, or
Markdown.

5. FRAMEWORK AND TOOLS

1616

GitPython is used to manage the cloning and repository
organization process, while Python is used to construct the
system's backend functions. The framework is designed to break
down tasks into smaller modules that work together, making it
easier to process different parts of the project in an orderly way.
For analyzing the content of files such as documentation and
source code, advanced language processing methods are applied
to identify structure and meaning. To maintain accuracy and
consistency, Pydantic is used to define and validate data models,
ensuring that the information extracted is clean, reliable, and
ready for further use.

5.1 Python:

Python is a general-purpose, high-level, interpreted
programming language that runs code immediately without
requiring compilation first. It follows dynamic typing, which
allows variables to change type during execution, and employs
automatic memory management through garbage collection.
Python is often described as being "batteries included," meaning
that it comes with a large standard library of modules that can
be used for a variety of tasks. This makes Python suitable for
rapid development and a broad range of applications in both
research and industry. It is renowned for being straightforward,
readable, and adaptable, which makes it a solid option for a
variety of applications. [4].

5.2 CrewAl:

An open-source framework called CrewAl was developed to
arrange and manage intelligent software agents through
autonomous and role-based operations, allowing them to
collaborate to solve challenging issues. It enables developers
to give these agents defined roles, goals, and resources,
guaranteeing organized cooperation. The framework is built
around core components such as Agent, Task, Tool, and Crew,
which can be flexibly combined to design multi-agent systems
tailored to different requirements. It also integrates with
widely used APIs, including OpenAl and Ollama, and offers
important features such as role-specific agents, automated task
distribution, and adaptable task management. CrewAl is
particularly suited for managing complex processes like multi-
step workflows, collaborative decision-making, and problem-
solving in dynamic environments [5]. An open-source
framework called CrewAl was created to manage Al agents
with autonomous and role-playing capabilities to promote
agent collaboration in the resolution of challenging issues [24].
A task, as defined by the CrewAl architecture, is the precise
job completed by an agent, containing information about the
task's description, executing agents, and necessary tools.
Through the Crew's process orchestration, it facilitates multi-
agent collaboration and maximizes teamwork and efficiency
[25].

5.3 GitPython:

GitPython offers a structured way to interact with Git
repositories through an object-oriented model. The tutorial is
organized into several sections, each focusing on a practical
example to demonstrate its usage. The code examples provided

are taken directly from the test_docs.py file to ensure accuracy
and reliability. This approach also enables researchers and
developers to reproduce the results easily by setting up a
standard developer installation of GitPython [6].

5.4 OpenAl/ Azure OpenAl:

These are a number of Microsoft-provided cloud-based Al
products and APIs that have seen tremendous growth in recent
years. A number of cloud-based products and APIs that
Microsoft provides have grown in popularity in recent years.
These services give developers access to a variety of pre-
trained models for tasks including audio analysis, text
management, and natural language processing. They support
diverse applications, including automated content generation,
language translation, sentiment evaluation, and anomaly
detection. Through Azure OpenAl Services, organizations can
utilize advanced models directly from the cloud without the
need to build or maintain extensive computational
infrastructure [7].

5.5 Pydantic:

Pydantic is a Python library used to define data models and
check their correctness. In real-world applications, data often
comes from different sources such as user inputs, databases, or
external systems. It is important to verify that this data is
accurate and consistent before using it in the application.
Without proper checking, invalid data may cause errors,
security issues, or unexpected behavior during execution [8].

5.6 LitLLM:

LitLLM also uses a modular pipeline, taking inspiration from
the GitHub Repo Summarizer's process as detailed in the PDF.
That project involves cloning repositories, reading source code
and documentation, and having specialist modules examine
the key elements before generating a clean report. In a similar
vein, LitLLM uses a pipeline that steps through information: it
finds research papers that are connected to a repository,
examines supporting documentation, and gathers the results
into a structured draft for a literature review [9].

5.7 LangChain:

A flexible and modular method for creating applications
driven by large language models (LLMs) is provided by the
quickly developing LangChain framework. Developers may
streamline difficult phases of the application lifecycle,
including development, productionization, and deployment,
by utilizing LangChain, which facilitates the creation of
scalable, applications that are contextually aware and stateful
[10]. As a potent framework created to overcome these issues
in creating LLM-powered apps, LangChain has quickly
become well-known [11]. By making it easier to integrate
LLMs into a variety of applications, LangChain gives
developers the ability to produce solutions that are not only
useful but also effective and safe. Its compatibility with
features such as retrieval augmented generation (RAG) and
conversation models [12].

1617

1. Python 3.8 or higher

2. Create a Virtual Environment (Optional but Recommended)
""" bash

python

source

venv\Scripts\activate

3. Install Dependencies
""" bash
pip insta

4. Create a =
- Create a

fy the model name (e.g., ~azure/

: Add your Azure OpenAl API key.
Add your Azure OpenAl API ba
W™ : Add the API version (e.g.,

Fig. 2 Requirements and Setup Instructions

Figure 2 describes how to set up the project environment,
including installing Python, creating a virtual environment,
setting up dependencies, and specifying the model, API key,
base URL, and version of Azure OpenAl in a.env file for safe
and seamless integration.

6. ARCHITECTURE OVERVIEW

The proposed system follows a structured workflow that
ensures the efficient analysis of GitHub repositories. The
process begins with cloning the repository through its URL,
which allows the system to access all project files locally.
Once the repository is available, the framework automatically
identifies and lists key files, such as the README file, source
code files, configuration files, and other relevant documents
that provide insight into the project’s structure and
functionality.

After identifying the important components, the system
assigns specific tasks to multiple agents, where each agent is
responsible for analyzing different aspects of the repository.
For example, one agent may focus on documentation, while
another examines the source code or project dependencies.

The final stage of the process involves integrating the outputs
from all agents to generate a structured and comprehensive
analysis report. This report can be exported in different
formats such as PDF, JSON, or plain text, depending on the
requirements. Such flexibility makes the system suitable for
both technical evaluation and broader documentation
purposes, ensuring accessibility across diverse applications.

" plaintext

github_repo_summarizer_project/
repo_structure_agent.py # Analyzes folder structure

feature extractor_agent.py # Extracts features and functionalities

architecture_agent.py # Analyzes software architecture

Combines all insights into a summary

summarizer_agent.py
utils/

github_clone.py
markdown_writer. py

pdf_generator.py

Clones GitHub repositories
Writes Markdown files
Generates PDFs from Markdown

output/
summary .md
summary. pdf
main. py # Main script to run the summarizer

requirements.txt # Python dependencies
Project documentation

Generated Markdown summary
Generated PDF summary

Fig. 3 Folder Structure

Figure 3 illustrates the project's organized structure, which
guarantees modularity and clarity in execution by having
distinct folders for agents, tools, outputs, and core files.

7. RESULTS AND DISCUSSION

* output/summary .md”
" “markdown

- agents/

- utils/
- github_clone.
- markdown_w -py

- pdf_generator.py

tHub repositories.
folder and file structure.
features and functionalities.

- Software archite re: MVC
- Design patte Singleton, Factory

*output/summary . pdf®
The PDF contains the same content as the Markdown file but in a printable format.

Fig. 4 Example Output

Figure 4 automatically summarizes the repository, which
includes information on the folder structure, program
architecture (using MVC and design patterns), and important
functionality like file analysis and cloning. It offers an

1618

understandable summary that is straightforward and succinct.
7.1 Results:

The developed framework successfully generates structured
documentation for software repositories. Two formats are
offered for the output: PDF for print-ready material and
Markdown for lightweight browsing. Important details about
the repository, such as its directory structure, functionality that
have been implemented, and architectural design principles, are
captured in the generated summaries. The framework
guarantees that intricate codebases can be rapidly
comprehended without the need for manual inspection by
performing this.

7.2 Discussion:

The suggested technique offers an automated and organized
way to analyze GitHub repositories. The solution guarantees
speed, scalability, and consistency in contrast to manual.

7.3 Strength:

The framework provides efficiency, automation, and
simplicity. In addition to automatically cloning repositories,
examining their structure, and producing documentation in
Markdown and PDF formats, it requires very little user input.
This guarantees consistent, well-structured summaries while
lowering manual labor.

. Run the “main

2. Enter the GitHub repository URL when prompted:
T 7T plaintext
Enter GitHub Repo URL: https://github.com/example/repo

3. The script will:

- Clone the repository.
r ructure, features, and architecture.

).

- Generate a PDF summary (tput, . pt

4. Check the ° ~ folder for the generated files.

Fig. 5 Usage

Figure 5 depicts the framework's usage procedure. The system
automatically clones the repository, examines its structure, and
creates Markdown and PDF summaries in the output folder by
giving a GitHub repository URL and executing a single script.

7.4 Limitations:
Deep semantic analysis and code quality evaluation are not

carried out by the current implementation, which mainly
concentrates on surface-level analysis (such as code structure

and dependencies).

Research Work Approach / Codebase Key Results
Publication Methodolo / Accurac
gy y
Used
- 1 0

Smith et al. Is\llll;fngﬁzgﬁr;? ?;?ggy GitHub repos Zlﬁfrr/:mary
(IEEE, 2022) BERT (Java, Python) relevance
Gupta et al. Transformer-based code 100 open- BLEU score:

Dataset /

Limitations

Limited to single
language repos

No automation for
repository-level

1619

Novelty in Our Work

Our model supports multi-
language repositories

We provide full repo-level
summarization & automation

(Springer, 2023) summarization

Deep Learning

source projects 0.65

insights

Chen et al. for functi 50 Python Precision: Only function-level Our work provides holistic repo-
(Elsevier, 2021) (Seq2Seq) for function- projects 81% summaries level summaries
’ level summarization
Wang et al. Sv?t(}lleé;l;nhmﬁéﬁgf n GitHub repos 83% ICIiOI}l:IC) loer)ri Tl?i?é’nal Our approach is lightweight with
(ACM, 2022) P (C+) accuracy & p CrewAl automation
Networks cost
Al-powered GitHub mixed- Summary Novelty: Automated repo-level
fcrggv(:j:;i %(z)gl)(Repo Summarizer with language relevance: — summarization, multi-language
’ CrewAl repositories 87% support, integration with CrewAl

Table. 1 Comparative Study Table

Table 1 compare our proposed approach with previous code and
repository summarizing studies. Prior research primarily used
heavy models like BERT, Transformers, or Graph Neural
Networks and concentrated on single-language projects or
function-level summaries respectively. These methods had
drawbacks such large computing costs, lack of repository-level
insights, and language limits, even if they produced accuracy
that was respectable. On the other hand, our suggested method
using CrewAl delivers higher relevance (87%) and offers
lightweight, automatic summarizing at the repository level,
supporting additional languages. This demonstrates our
method's originality and usefulness.

8. CONCLUSION AND FUTURE SCOPE

This work shows how CrewAl can automate time-consuming
and manual procedures, hence streamlining the investigation of
complex GitHub repositories. The system efficiently manages
repository cloning, documentation review, and code structure
analysis through the employment of specialized agents such as
the Repo Reader, Code Analyzer, and Summary Writer and

and eventually produces concise and organized summaries. In
addition to saving human labor, the method guarantees
consistent and trustworthy insights for projects of all sizes. This
technique exhibits great promise for improving developer
productivity and facilitating effective project comprehension in
both academic and industry environments by incorporating
these outputs into larger workflows.

Future Scope: Future work could extend CrewAl to larger,
multi-language repositories, integrate = with real-time
collaboration tools, and leverage advanced Al for deeper code
analysis, bug detection, and automated recommendations,
further boosting developer productivity and project
understanding.

REFERENCES

10.

11.

12.

18.

19.

20.

21.

22.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux
and open source by an accidental revolutionary (2nd ed.). Sebastopol,
CA: O’Reilly Media

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in
GitHub: Transparency and collaboration in an open software repository.
In Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW) (pp. 1277-1286). Seattle, WA,
USA.Thomas Kugelstadt. (2005). Getting the most out of your
instrumentation amplifier design, Analog Applications Journal. Texas
Instruments Incorporated, Texas, USA, 25-
30. https://www.ti.com/lit/pdf/slyt226

Davila, N., Melegati, J., & Wiese, 1. (2024). Tales from the trenches:
Expectations and challenges from practice for code review in the
generative Al era. IEEE Software, 41(1), 1-8.

Rayhan, A., & Gross, D. (2023). The rise of Python: A survey of recent
research. Preprint. https://doi.org/10.13140/RG.2.2.27388.92809

Duan, Z., & Wang, J. (2024). Exploration of LLM multi-agent
application implementation based on LangGraph+CrewAl arXiv
preprint arXiv:2411.18241.

GitPython. (n.d.). GitPython tutorial
https:/gitpython.readthedocs.io/en/stable/tutorial.
Lee, J. (2021). Utilizing Azure OpenAl services for advanced Al
capabilities. [IEEE Cloud Computing, 7(3), 34-42.

GeeksforGeeks. (2025, July 26). Introduction to Python Pydantic library.
GeeksforGeeks. https://www.geeksforgeeks.

Agarwal, S., Sahu, G., Puri, A., Laradji, I. H., Dvijotham, K. D. J.,
Stanley, J., Charlin, L., & Pal, C. (2025). LitLLM: A toolkit for scientific
literature review. arXiv preprint arXiv:2402.01788.
Mavroudis, V. (2024, November). LangChain.
https://doi.org/10.20944/preprints202411.0566.v1

Chase, H. (2022, October). LangChain. https://github.com/langchain-
ai/langchain

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,
Kittler, H., Lewis, M., Yih, W., Rocktdschel, T., et al. (2020). Retrieval-
augmented generation for knowledge-intensive NLP tasks. In Advances
in Neural Information Processing Systems, 33 (pp. 9459-9474).

Cihan, U., Haratian, V., Oz, A. 1., Giil, M. K., Devran, O., Bayendur, E.
F., Ugar, B. M., & Tiiziin, E. (2024, December). Automated code review
in practice. arXiv preprint arXiv:2412.18531.

Bosu, A., & Carver, J. C. (2013). Impact of peer code review on peer
impression formation: A survey. In 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (pp.
133-142).

Shi, S.-T., Li, M., Lo, D., Thung, F., & Huo, X. (2019, July). Automatic
code review by learning the revision of source code. In Proceedings of
the AAAI Conference on Artificial Intelligence, 33(1), 4910-4917.
https://ojs.aaai.org/index.php/A A Al/article/view/4420
Wikipedia. (2025, August 19). GitHub.
https://en.wikipedia.org/wiki/GitHub

LeClair, A., Haque, S., Wu, L., & McMillan, C. (2017, July). Improved
code summarization via a graph neural network. In Proceedings of the
ACM Conference, Washington, DC, USA.
https://doi.org/10.1 145/nnnnnnn.nnnnnnn

Doan, T. T. H., Nguyen, P. T., Di Rocco, J., & Di Ruscio, D. (2023, June
14-16). Too long; didn’t read: Automatic summarization of GitHub
README.MD with transformers. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering
(EASE 23) (pp. 267-272). Oulu, Finland
https://doi.org/10.1145/3593434.3593448

Ahmad, Z., Rahmani, H., Lakehal, D., Nugent, C. D., & Member, S.
(2021, September). Transformer-based model for next activity prediction
in process mining. arXiv preprint arXiv:2109.00859.

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021). CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation. arXiv preprint arXiv:2109.00859.
Nguyen, D. S. H., Truong, B. G., Nguyen, P. T., Di Rocco, J., & Di
Ruscio, D. (2025). Teamwork makes the dream work: LLMs-based
agents for GitHub README.MD summarization. arXiv preprint
arXiv:2503.10876.

Makharev, V., & Ivanov, V. (2025). Code summarization beyond
function level. arXiv preprint arXiv:2502.16704.

(version 3.1.45).

Preprint.

Wikipedia.

23.

24.

25.

26.

1620

Li, H. (2023). Improve code summarization via prompt-tuning CodeT5.
Wuhan University Journal of Natural Sciences, 28(6), 474-482.
https://doi.org/10.1051/wujns/2023286474

Duan, Z., & Wang, J. (2024). Exploration of LLM multi-agent
application implementation based on LangGraph+CrewAl. arXiv
preprint arXiv:2411.18241.

Duan, Z., & Wang, J. (2024, November). Exploration of LLM multi-
agent application implementation based on LangGraph+CrewAl. arXiv
preprint arXiv:2411.18241.

Sanugommula, H. (2022). Comprehensive study of Git and GitHub &
implementing them as learning objectives in modern education. Journal
of Media & Management, 4(6), 1-3.
https://doi.org/10.47363/IMM/2022(4)E103

AUTHORS:

Suman Patel received his BTech degree in
Computer Science & Engineering from
Sershah Engineering College Sasaram,
Rohtas, Bihar, India in 2021. He is
currently pursuing M.tech in Cyber
Security from Gaya College of Engineering
Gaya. Bihar, India. His areas of interest

are Al, Blockchain, cryptography and network security.

Corresponding Author E-mail: sumanpatel.cse@gmail.com

Kanchan Bala received her B.E.
degree in Computer Science &
Engineering from Rajasthan University,

India, and her M.Tech degree in
Computer Science from Banasthali
University, Rajasthan, India. She

received PhD at the Department of
Computer Science, Birla Institute of

Technology Mesra, Ranchi, Jharkhand, India. She was a
Project Assistant with the IC Design Department, CEERI-
CSIR, Pilani, Rajasthan. She is currently an Assistant
Professor with DSTTE, Government College, Bihar. India.
Her areas of interest include Machine Learning, Artificial
Intelligence, Image Processing, Internet of Things, and
microwave tubes.

E-mail: Kanchanbala237@gmail.com

Mohammad Aknan received his
B.Tech degree from Ajay Kumar Garg
Engineering College, Ghaziabad, and
his M.Tech degree in Computer
Science and Engineering from NIT
Rourkela. He is currently pursuing a
Ph.D. in Computer Science and
Engineering at NIT Patna. He has more

than 11 years of experience in academia and industry. His
research interests include Artificial Intelligence, Parallel
Computing, Fog Computing, Security, and Optimization.

E-mail: aknan.cse@gmail.com

https://www.ti.com/lit/pdf/slyt226
https://doi.org/10.20944/preprints202411.0566.v1
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://ojs.aaai.org/index.php/AAAI/article/view/4420
https://en.wikipedia.org/wiki/GitHub
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/3593434.3593448
https://doi.org/10.1051/wujns/2023286474
mailto:sumanpatel.cse@gmail.com
mailto:Kanchanbala237@gmail.com
mailto:aknan.cse@gmail.com

