

 ISSN: 2584-0495 Vol. 3, Issue 3, pp. 1614-1620

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

AI-Powered GitHub Repository Summarizer with CrewAI:
Automating Codebase Analysis

Suman Patel, Kanchan Bala and Mohammad Aknan

Cite as: Patel, S., Bala, K., & Mohammad, A. (2025). AI-Powered GitHub Repository
Summarizer with CrewAI: Automating Codebase Analysis. International Journal of
Microsystems and IoT, 3(3), 1614–1620. https://doi.org/10.5281/zenodo.18146441

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 10 March 2025

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

https://doi.org/10.5281/zenodo.18146441

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18146441
https://doi.org/10.5281/zenodo.18146441
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1614

 International Journal of Microsystems and IoT

Vol.3, Issue 3, pp.1614-1620; DOI: https://doi.org/10.5281/zenodo.18146441

AI-Powered GitHub Repository Summarizer with CrewAI: Automating Codebase
Analysis

Suman Patel1, Kanchan Bala1 and Mohammad Aknan2

1Department of Computer Science & Engineering, Gaya College of Engineering, Gaya, Bihar, India
2Department of Computer Science & Engineering, Motihari College of Engineering, Motihari, Bihar, India.

KEYWORDS

Code summarization; Crew AI;
GitHub analysis; multi-agent
systems; repository mining;
automation; software architecture

1. INTRODUCTION

This work introduces a GitHub Repository Summarizer

developed using Crew AI, a framework that supports

collaborative agents. The system is able to clone repositories,

locate the most relevant files, and use specialized agents to

examine both documentation and source code. The analysis is

then organized into a structured summary that outlines project

features, architecture, and core modules. The framework makes

use of Python for backend processing, GitPython for repository

handling, and advanced language models for semantic analysis,

enabling it to provide precise and concise overviews of

complex software projects.

The main goal of this work is to give developers and researchers

a practical tool that reduces the effort required to manually go

through large codebases, while also improving their

understanding and overall productivity. Unlike the usual

methods, this system not only speeds up the analysis process

but also provides results in different formats, making it easy to

use within larger automated workflows. This approach supports

the advancement of modern software engineering by showing

how smart, collaborative systems can simplify repository

exploration and make development tasks more efficient.

In the present era, open-source development and software

repositories are growing at unprecedented levels.

© 2025 The Author(s). Published by ISVE, Ranchi, India

Platforms like GitHub host millions of projects, ranging from

small utilities to highly complex frameworks. It consists of

thousands of files. Understanding, which is often a challenging

task, because this requires developers to manually check the

documentation, review the source code, and identify its

architecture. We suggest making use of the code's developer-

assigned identifiers. In order to make the code easier to read,

developers often use informative identifiers while developing

programs. This helps to maintain rich code semantics [20].

Iterative prompt refinement using manual prompt engineering

methodologies, such Chain-of Thought (CoT) reasoning,

necessitates a substantial amount of human labor.

Subjective bias and scalability problems plague this time-

consuming procedure, making it challenging to generalize

across a variety of jobs [21]. Automatic code summarization

systems have become widely used as a result of these

developments, improving code readability, maintainability, and

comprehension in general [22]. In contrast to earlier methods

that used conventional models for code summarization, pre-

trained language models (PLMs) provide a multitude of past

knowledge that is ingrained in their parameters and obtained

during the lengthy pre-training stage [23]. This process is not

only time-consuming but also requires significant technical

expertise.

Open-source software has fundamentally changed how we

view the software development process [1]. GitHub is a widely

used platform for hosting code that works with Git for source

ABSTRACT

Manually reviewing large and complicated codes is time-consuming and labor-intensive. It takes a lot
of time and effort to read huge and complex code projects and understand them. Such an effort is a
time-consuming and not efficient process. Modern software contains thousands of files; hence, it is very
difficult to understand its architecture, features, and key components easily. To address these
challenges, there is a need for an automated system that can summarize, clone, and analyze GitHub
repositories. Such a system should be capable of handling large and complex repositories while
reducing the amount of human effort required. This paper presents an automated solution using a multi-
agent system powered by Crew AI to summarize and analyze GitHub repositories. This system employs
specialized agents that collaboratively clone repositories, parse key files (e.g., README, source code),
and extract relevant functional and architectural insights. The backend is implemented in Python, using
GitPython for repository management and large language models via OpenAI for semantic analysis.
These agents operate in parallel to perform source code inspection, document analysis, and report
generation. The output is human-readable, easily understandable, and structured, presented in multiple
formats, such as PDF, Markdown, or JSON. This framework significantly reduces manual efforts and
enables the creation of a scalable codebase understanding, making it a practical tool for developers,
researchers, and automated documentation pipelines.

https://doi.org/10.5281/zenodo.18146441

1615

code management. In addition to storing software projects, it

also brings in the social side of development. Every user on

GitHub has a public profile, and their activities can be seen and

followed by others in the community. This way of linking a

developer’s identity with their work and contributions makes

GitHub stand out from other platforms [2]. The bulk of

projects are freely shared with the world via GitHub, the

biggest open source software marketplace. One or more

README.MD files are included with every GitHub

repository to offer basic information about the repository, such

as help, instructions, or information on updates, to mention a

few. To represent information in an understandable manner,

such a file is presented in the Markdown format [18].

More than 420 million repositories, including at least 28

million public repositories, and more than 100 million

developers were listed on GitHub as of January 2023. As of

June 2023, it is the biggest source code host in the world [16].

Git's capability is expanded by GitHub, which provides a

centralized platform with a number of collaboration tools.

Because it offers repository hosting, managing, sharing, and

storing data is simple. Git repositories Strong collaboration

features like pull requests, problems, and project boards are also

included in GitHub, which facilitate team communication and

let engineers debate and examine changes before incorporating

them into the main source. GitHub allows teams to automate

testing, deployment, and other processes right within the

platform by integrating with CI/CD (Continuous Integration and

Continuous Deployment) technologies platform [26].

In the industry, automated code review solutions are becoming

more and more popular [3]. However, there is limited practical

evidence about the real advantages of these tools. For instance,

while automated reviews may appear to save time, they can

also create new issues that reduce this benefit. Likewise, the

savings from lowering developer effort may not be significant

when compared to the expenses involved in maintaining and

running such tools [13]. Developers take the time to

comprehend the work of other developers and its position

within the project in order to do a code review [14]. We

suggest making use of the code's developer-assigned

identifiers. In order to make the code easier to read, developers

often use informative identifiers while developing programs.

This helps to maintain rich code semantics [19].

Developers invest effort in comprehending the code update,

searching for errors, and identifying performance snags or

general departures from coding standards in order to produce

code reviews. Several attempts have been made to give code

reviews using pre-trained models [15]. Research on automatic

code summarization is growing quickly. Programmers are

known for ignoring the labor-intensive process of creating their

own summaries, and automation has long been mentioned as a

preferable substitute [17].

2. PROBLEM STATEMENT

2.1 Time consuming:

When a software project grows large, it often contains

thousands of files, with each file having hundreds or even

thousands of lines of code. To understand such a project, a

developer usually has to open file after file, read through the

logic, follow how different functions interact, and connect this

information to the overall structure of the system. This process

is slow because code is often spread across multiplefolders,

written in different programming languages, and may not

always be documented clearly.

 2.2 Inefficient and scalability issue:

Developers usually look for an overall understanding of how a

project works such as its main modules, workflows, and

dependencies without needing to read every single line of code.

However, in practice they often end up scanning through

thousands of lines spread across many files just to piece together

that bigger picture, which wastes time and energy. This becomes

even harder when teams handle several repositories at once,

because the same slow, manual process has to be repeated for

each one. As the number of repositories grows, this approach

quickly becomes unmanageable, making it difficult to keep up

with the pace of development.

3. OBJECTIVES

Building a system that can automatically replicate and analyze

the contents of public GitHub repositories is the primary

objective of this study. It collects useful information from

documentation, source code, and configuration files, while

dividing the work into smaller, organized steps to make the

process more efficient. Using the collected details, the system

prepares a clear and structured summary of the project. The final

results are provided in multiple formats such as PDF, JSON, or

Markdown, making them convenient for use in different

environments and workflows.

4. Methodology

This work's methodology is based on a structured pipeline that

automates repository analysis and summary. To make a local

working copy, GitHub repositories were first gathered and

cloned. README, documentation, and source code were found

to be the main project files used for analysis. Project

descriptions and background information were extracted using

a documentation reader module, and the program architecture

and functional elements were analyzed using a code analyzer.

After the insights were retrieved, a summary writer module

combined them to create a logical overview of the repository.

Following processing, the data was organized into structured

reports and exported in a variety of formats, including

Markdown, JSON, and PDF, to guarantee accessibility and

simplicity of distribution.

The study was conducted using a set of precise procedures. For

local access to the files, GitHub repositories were first cloned.

The README, documentation, and source code were then

identified as important files. After that, the source code was

examined to learn about its structure and functionality, and the

documentation was studied to comprehend the project. This data

was gathered, and a summary that synthesized the results into

1616

an understandable project description was produced. The results

were finally transformed into reports, which were then

published in Markdown, JSON, and PDF forms. This

methodical approach guarantees dependable results and makes

the process easy to replicate.

The study used an organized but simple procedure to evaluate

and compile GitHub repositories.

The strategy is guaranteed to be scalable, repeatable, and able to

yield consistent results across many repositories thanks to this

standardized process.

Fig. 1 Workflow of the System

Figure 1 illustrates the system's sequential operation, beginning

with a user-provided GitHub URL. Agents read the source code

and documentation after cloning the repository and identifying

the important files. The results of this analysis are used to build

a summary, which is then used to create a full report that gives

a clear overview of the project in formats like PDF, JSON, or

Markdown.

5. FRAMEWORK AND TOOLS

GitPython is used to manage the cloning and repository

organization process, while Python is used to construct the

system's backend functions. The framework is designed to break

down tasks into smaller modules that work together, making it

easier to process different parts of the project in an orderly way.

For analyzing the content of files such as documentation and

source code, advanced language processing methods are applied

to identify structure and meaning. To maintain accuracy and

consistency, Pydantic is used to define and validate data models,

ensuring that the information extracted is clean, reliable, and

ready for further use.

5.1 Python:

Python is a general-purpose, high-level, interpreted

programming language that runs code immediately without

requiring compilation first. It follows dynamic typing, which

allows variables to change type during execution, and employs

automatic memory management through garbage collection.

Python is often described as being "batteries included," meaning

that it comes with a large standard library of modules that can

be used for a variety of tasks. This makes Python suitable for

rapid development and a broad range of applications in both

research and industry. It is renowned for being straightforward,

readable, and adaptable, which makes it a solid option for a

variety of applications. [4].

5.2 CrewAI:

An open-source framework called CrewAI was developed to

arrange and manage intelligent software agents through

autonomous and role-based operations, allowing them to

collaborate to solve challenging issues. It enables developers

to give these agents defined roles, goals, and resources,

guaranteeing organized cooperation. The framework is built

around core components such as Agent, Task, Tool, and Crew,

which can be flexibly combined to design multi-agent systems

tailored to different requirements. It also integrates with

widely used APIs, including OpenAI and Ollama, and offers

important features such as role-specific agents, automated task

distribution, and adaptable task management. CrewAI is

particularly suited for managing complex processes like multi-

step workflows, collaborative decision-making, and problem-

solving in dynamic environments [5]. An open-source

framework called CrewAI was created to manage AI agents

with autonomous and role-playing capabilities to promote

agent collaboration in the resolution of challenging issues [24].

A task, as defined by the CrewAI architecture, is the precise

job completed by an agent, containing information about the

task's description, executing agents, and necessary tools.

Through the Crew's process orchestration, it facilitates multi-

agent collaboration and maximizes teamwork and efficiency

[25].

5.3 GitPython:

GitPython offers a structured way to interact with Git

repositories through an object-oriented model. The tutorial is

organized into several sections, each focusing on a practical

example to demonstrate its usage. The code examples provided

1617

are taken directly from the test_docs.py file to ensure accuracy

and reliability. This approach also enables researchers and

developers to reproduce the results easily by setting up a

standard developer installation of GitPython [6].

5.4 OpenAI / Azure OpenAl:

These are a number of Microsoft-provided cloud-based AI

products and APIs that have seen tremendous growth in recent

years. A number of cloud-based products and APIs that

Microsoft provides have grown in popularity in recent years.

These services give developers access to a variety of pre-

trained models for tasks including audio analysis, text

management, and natural language processing. They support

diverse applications, including automated content generation,

language translation, sentiment evaluation, and anomaly

detection. Through Azure OpenAI Services, organizations can

utilize advanced models directly from the cloud without the

need to build or maintain extensive computational

infrastructure [7].

5.5 Pydantic:

Pydantic is a Python library used to define data models and

check their correctness. In real-world applications, data often

comes from different sources such as user inputs, databases, or

external systems. It is important to verify that this data is

accurate and consistent before using it in the application.

Without proper checking, invalid data may cause errors,

security issues, or unexpected behavior during execution [8].

5.6 LitLLM:

LitLLM also uses a modular pipeline, taking inspiration from

the GitHub Repo Summarizer's process as detailed in the PDF.

That project involves cloning repositories, reading source code

and documentation, and having specialist modules examine

the key elements before generating a clean report. In a similar

vein, LitLLM uses a pipeline that steps through information: it

finds research papers that are connected to a repository,

examines supporting documentation, and gathers the results

into a structured draft for a literature review [9].

5.7 LangChain:

A flexible and modular method for creating applications

driven by large language models (LLMs) is provided by the

quickly developing LangChain framework. Developers may

streamline difficult phases of the application lifecycle,

including development, productionization, and deployment,

by utilizing LangChain, which facilitates the creation of

scalable, applications that are contextually aware and stateful

[10]. As a potent framework created to overcome these issues

in creating LLM-powered apps, LangChain has quickly

become well-known [11]. By making it easier to integrate

LLMs into a variety of applications, LangChain gives

developers the ability to produce solutions that are not only

useful but also effective and safe. Its compatibility with

features such as retrieval augmented generation (RAG) and

conversation models [12].

Fig. 2 Requirements and Setup Instructions

Figure 2 describes how to set up the project environment,

including installing Python, creating a virtual environment,

setting up dependencies, and specifying the model, API key,

base URL, and version of Azure OpenAI in a.env file for safe

and seamless integration.

6. ARCHITECTURE OVERVIEW

The proposed system follows a structured workflow that

ensures the efficient analysis of GitHub repositories. The

process begins with cloning the repository through its URL,

which allows the system to access all project files locally.

Once the repository is available, the framework automatically

identifies and lists key files, such as the README file, source

code files, configuration files, and other relevant documents

that provide insight into the project’s structure and

functionality.

After identifying the important components, the system

assigns specific tasks to multiple agents, where each agent is

responsible for analyzing different aspects of the repository.

For example, one agent may focus on documentation, while

another examines the source code or project dependencies.

The final stage of the process involves integrating the outputs

from all agents to generate a structured and comprehensive

analysis report. This report can be exported in different

formats such as PDF, JSON, or plain text, depending on the

requirements. Such flexibility makes the system suitable for

both technical evaluation and broader documentation

purposes, ensuring accessibility across diverse applications.

1618

Fig. 3 Folder Structure

Figure 3 illustrates the project's organized structure, which

guarantees modularity and clarity in execution by having

distinct folders for agents, tools, outputs, and core files.

7. RESULTS AND DISCUSSION

Fig. 4 Example Output

Figure 4 automatically summarizes the repository, which

includes information on the folder structure, program

architecture (using MVC and design patterns), and important

functionality like file analysis and cloning. It offers an

understandable summary that is straightforward and succinct.

7.1 Results:

The developed framework successfully generates structured

documentation for software repositories. Two formats are

offered for the output: PDF for print-ready material and

Markdown for lightweight browsing. Important details about

the repository, such as its directory structure, functionality that

have been implemented, and architectural design principles, are

captured in the generated summaries. The framework

guarantees that intricate codebases can be rapidly

comprehended without the need for manual inspection by

performing this.

7.2 Discussion:

The suggested technique offers an automated and organized

way to analyze GitHub repositories. The solution guarantees

speed, scalability, and consistency in contrast to manual.

7.3 Strength:

The framework provides efficiency, automation, and

simplicity. In addition to automatically cloning repositories,

examining their structure, and producing documentation in

Markdown and PDF formats, it requires very little user input.

This guarantees consistent, well-structured summaries while

lowering manual labor.

Fig. 5 Usage

Figure 5 depicts the framework's usage procedure. The system

automatically clones the repository, examines its structure, and

creates Markdown and PDF summaries in the output folder by

giving a GitHub repository URL and executing a single script.

7.4 Limitations:

Deep semantic analysis and code quality evaluation are not

carried out by the current implementation, which mainly

concentrates on surface-level analysis (such as code structure

1619

and dependencies).

Table. 1 Comparative Study Table

Table 1 compare our proposed approach with previous code and

repository summarizing studies. Prior research primarily used

heavy models like BERT, Transformers, or Graph Neural

Networks and concentrated on single-language projects or

function-level summaries respectively. These methods had

drawbacks such large computing costs, lack of repository-level

insights, and language limits, even if they produced accuracy

that was respectable. On the other hand, our suggested method

using CrewAI delivers higher relevance (87%) and offers

lightweight, automatic summarizing at the repository level,

supporting additional languages. This demonstrates our

method's originality and usefulness.

8. CONCLUSION AND FUTURE SCOPE

This work shows how CrewAI can automate time-consuming

and manual procedures, hence streamlining the investigation of

complex GitHub repositories. The system efficiently manages

repository cloning, documentation review, and code structure

analysis through the employment of specialized agents such as

the Repo Reader, Code Analyzer, and Summary Writer and

and eventually produces concise and organized summaries. In

addition to saving human labor, the method guarantees

consistent and trustworthy insights for projects of all sizes. This

technique exhibits great promise for improving developer

productivity and facilitating effective project comprehension in

both academic and industry environments by incorporating

these outputs into larger workflows.

Future Scope: Future work could extend CrewAI to larger,

multi-language repositories, integrate with real-time

collaboration tools, and leverage advanced AI for deeper code

analysis, bug detection, and automated recommendations,

further boosting developer productivity and project

understanding.

Research Work

(Publication)

Approach /

Methodology

Dataset /

Codebase

Used

Key Results

/ Accuracy
Limitations Novelty in Our Work

Smith et al.

(IEEE, 2022)

NLP-based repository

summarization using

BERT

GitHub repos

(Java, Python)

78%

summary

relevance

Limited to single

language repos

Our model supports multi-

language repositories

Gupta et al.

(Springer, 2023)

Transformer-based code

summarization

100 open-

source projects

BLEU score:

0.65

No automation for

repository-level

insights

We provide full repo-level

summarization & automation

Chen et al.

(Elsevier, 2021)

Deep Learning

(Seq2Seq) for function-

level summarization

50 Python

projects

Precision:

81%

Only function-level

summaries

Our work provides holistic repo-

level summaries

Wang et al.

(ACM, 2022)

Code summarization

with Graph Neural

Networks

GitHub repos

(C++)

83%

accuracy

Complex model,

high computational

cost

Our approach is lightweight with

CrewAI automation

Proposed Work

(CrewAI, 2025)

AI-powered GitHub

Repo Summarizer with

CrewAI

mixed-

language

repositories

Summary

relevance:

87%

–

Novelty: Automated repo-level

summarization, multi-language

support, integration with CrewAI

1620

REFERENCES

1. Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux

and open source by an accidental revolutionary (2nd ed.). Sebastopol,
CA: O’Reilly Media

2. Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in

GitHub: Transparency and collaboration in an open software repository.
In Proceedings of the ACM Conference on Computer Supported

Cooperative Work (CSCW) (pp. 1277–1286). Seattle, WA,

USA.Thomas Kugelstadt. (2005). Getting the most out of your
instrumentation amplifier design, Analog Applications Journal. Texas

Instruments Incorporated, Texas, USA, 25-

30. https://www.ti.com/lit/pdf/slyt226
3. Davila, N., Melegati, J., & Wiese, I. (2024). Tales from the trenches:

Expectations and challenges from practice for code review in the

generative AI era. IEEE Software, 41(1), 1–8.
4. Rayhan, A., & Gross, D. (2023). The rise of Python: A survey of recent

research. Preprint. https://doi.org/10.13140/RG.2.2.27388.92809

5. Duan, Z., & Wang, J. (2024). Exploration of LLM multi-agent

application implementation based on LangGraph+CrewAI. arXiv

preprint arXiv:2411.18241.

6. GitPython. (n.d.). GitPython tutorial (version 3.1.45).
https://gitpython.readthedocs.io/en/stable/tutorial.

7. Lee, J. (2021). Utilizing Azure OpenAI services for advanced AI

capabilities. IEEE Cloud Computing, 7(3), 34–42.
8. GeeksforGeeks. (2025, July 26). Introduction to Python Pydantic library.

GeeksforGeeks. https://www.geeksforgeeks.

9. Agarwal, S., Sahu, G., Puri, A., Laradji, I. H., Dvijotham, K. D. J.,
Stanley, J., Charlin, L., & Pal, C. (2025). LitLLM: A toolkit for scientific

literature review. arXiv preprint arXiv:2402.01788.

10. Mavroudis, V. (2024, November). LangChain. Preprint.
https://doi.org/10.20944/preprints202411.0566.v1

11. Chase, H. (2022, October). LangChain. https://github.com/langchain-

ai/langchain
12. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,

Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., et al. (2020). Retrieval-
augmented generation for knowledge-intensive NLP tasks. In Advances

in Neural Information Processing Systems, 33 (pp. 9459–9474).

13. Cihan, U., Haratian, V., Öz, A. İ., Gül, M. K., Devran, Ö., Bayendur, E.
F., Uçar, B. M., & Tüzün, E. (2024, December). Automated code review

in practice. arXiv preprint arXiv:2412.18531.

14. Bosu, A., & Carver, J. C. (2013). Impact of peer code review on peer
impression formation: A survey. In 2013 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (pp.

133–142).
15. Shi, S.-T., Li, M., Lo, D., Thung, F., & Huo, X. (2019, July). Automatic

code review by learning the revision of source code. In Proceedings of

the AAAI Conference on Artificial Intelligence, 33(1), 4910–4917.
https://ojs.aaai.org/index.php/AAAI/article/view/4420

16. Wikipedia. (2025, August 19). GitHub. Wikipedia.

https://en.wikipedia.org/wiki/GitHub
17. LeClair, A., Haque, S., Wu, L., & McMillan, C. (2017, July). Improved

code summarization via a graph neural network. In Proceedings of the

ACM Conference, Washington, DC, USA.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

18. Doan, T. T. H., Nguyen, P. T., Di Rocco, J., & Di Ruscio, D. (2023, June

14–16). Too long; didn’t read: Automatic summarization of GitHub

README.MD with transformers. In Proceedings of the International

Conference on Evaluation and Assessment in Software Engineering

(EASE ’23) (pp. 267–272). Oulu, Finland.
https://doi.org/10.1145/3593434.3593448

19. Ahmad, Z., Rahmani, H., Lakehal, D., Nugent, C. D., & Member, S.

(2021, September). Transformer-based model for next activity prediction
in process mining. arXiv preprint arXiv:2109.00859.

20. Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021). CodeT5:

Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation. arXiv preprint arXiv:2109.00859.

21. Nguyen, D. S. H., Truong, B. G., Nguyen, P. T., Di Rocco, J., & Di

Ruscio, D. (2025). Teamwork makes the dream work: LLMs-based
agents for GitHub README.MD summarization. arXiv preprint

arXiv:2503.10876.

22. Makharev, V., & Ivanov, V. (2025). Code summarization beyond
function level. arXiv preprint arXiv:2502.16704.

23. Li, H. (2023). Improve code summarization via prompt-tuning CodeT5.

Wuhan University Journal of Natural Sciences, 28(6), 474–482.

https://doi.org/10.1051/wujns/2023286474

24. Duan, Z., & Wang, J. (2024). Exploration of LLM multi-agent
application implementation based on LangGraph+CrewAI. arXiv

preprint arXiv:2411.18241.

25. Duan, Z., & Wang, J. (2024, November). Exploration of LLM multi-
agent application implementation based on LangGraph+CrewAI. arXiv

preprint arXiv:2411.18241.

26. Sanugommula, H. (2022). Comprehensive study of Git and GitHub &
implementing them as learning objectives in modern education. Journal

of Media & Management, 4(6), 1–3.

https://doi.org/10.47363/JMM/2022(4)E103

AUTHORS:

Suman Patel received his BTech degree in

Computer Science & Engineering from

Sershah Engineering College Sasaram,

Rohtas, Bihar, India in 2021. He is

currently pursuing M.tech in Cyber

Security from Gaya College of Engineering

Gaya. Bihar, India. His areas of interest

are AI, Blockchain, cryptography and network security.

Corresponding Author E-mail: sumanpatel.cse@gmail.com

 Kanchan Bala received her B.E.

degree in Computer Science &

Engineering from Rajasthan University,

India, and her M.Tech degree in

Computer Science from Banasthali

University, Rajasthan, India. She

received PhD at the Department of

Computer Science, Birla Institute of

Technology Mesra, Ranchi, Jharkhand, India. She was a

Project Assistant with the IC Design Department, CEERI-

CSIR, Pilani, Rajasthan. She is currently an Assistant

Professor with DSTTE, Government College, Bihar. India.

Her areas of interest include Machine Learning, Artificial

Intelligence, Image Processing, Internet of Things, and

microwave tubes.

E-mail: Kanchanbala237@gmail.com

Mohammad Aknan received his

B.Tech degree from Ajay Kumar Garg

Engineering College, Ghaziabad, and

his M.Tech degree in Computer

Science and Engineering from NIT

Rourkela. He is currently pursuing a

Ph.D. in Computer Science and

Engineering at NIT Patna. He has more

than 11 years of experience in academia and industry. His

research interests include Artificial Intelligence, Parallel

Computing, Fog Computing, Security, and Optimization.

E-mail: aknan.cse@gmail.com

https://www.ti.com/lit/pdf/slyt226
https://doi.org/10.20944/preprints202411.0566.v1
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://ojs.aaai.org/index.php/AAAI/article/view/4420
https://en.wikipedia.org/wiki/GitHub
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/3593434.3593448
https://doi.org/10.1051/wujns/2023286474
mailto:sumanpatel.cse@gmail.com
mailto:Kanchanbala237@gmail.com
mailto:aknan.cse@gmail.com

