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ABSTRACT

This paper presents a lightweight hardware accelerator for weather prediction based on linear regression,
implemented using Vitis High-Level Synthesis (HLS) targeting the Arty A7 FPGA. The design utilizes
historical weather data to predict temperature and humidity while evaluating R-squared (R?) and Mean
Squared Error (MSE) for accuracy. The design is synthesized and co-simulated within Vitis HLS,
exported as RTL, and successfully integrated into Vivado as a reusable IP. Performance is compared
against Python-based models to highlight the advantages of FPGA acceleration in the VLSI domain.
Resource utilization metrics such as LUTs, FFs, BRAMs, and DSPs are analyzed. Results confirm the
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feasibility and efficiency of Vitis HLS for real-time, low-power weather forecasting systems.

1. INTRODUCTION

In today’s fast paced climate changing world accurate and
real-time weather prediction is vital in various sectors such as
climate studies, agriculture, disaster management, and smart
homes. And to perform data collection system relies on
Traditional methods such as microcontrollers, cloud-based
solutions, which introduce latency, computational power
limitation, real-time data processing capabilities and are not
suitable for remote or power-constrained locations. Field-
Programmable Gate Arrays (FPGAs) offer an ideal platform
for implementing low-latency, parallel processing systems
and real-time Al inference. The main aim of this project
proposes a weather prediction approach on the Arty A7 FPGA
board utilizing Linear Regression algorithms to enhance
forecast reliability.

The implementation of VLSI blocks using Vivado HLS on the
Arty A7 FPGA demonstrates an efficient design methodology
that leverages high-level synthesis for rapid prototyping and
real-time hardware validation. Pranitha et al. (2020) illustrate
the integration of IP cores and Verilog logic to generate
sinusoidal signals and interface LEDs, supported by
simulation, synthesis, and bitstream generation processes. The
approach emphasizes low power consumption and high-speed
performance, making it suitable for telehealth, remote
sensing, and disaster prediction applications [1].

The paper “FPGA Architecture: Survey and Challenges” by
Kuon, Tessier, and Rose offers a comprehensive survey of
FPGA architectural advancements, beginning with a historical
overview of programmable logic devices such as PALs and
PLAs and culminating in insights into emerging technologies
poised to address deep-submicron scaling challenges.

©2023 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

It thoroughly examines three predominant programming
technologies—SRAM-based, Flash’ EEPROM, and antifuse—
and explores their implications on reusability, power
consumption, and permanence [2].

To enhance embedded image processing performance, Gao et
al. (2018) designed a system based on the ZYNQ-7000 SoC,
leveraging Vivado HLS for hardware acceleration and AXI4-
Stream for efficient data transmission. The feature extraction
algorithm—including Gaussian filtering and marker center
calculation—was implemented in Programmable Logic to
exploit parallel computation, while the Processor System
handled control logic. The AXI4-Stream interface facilitated
the high-speed transfer of image pixel and coordinate data,
simplifying the circuit design and improving throughput.
Experimental results demonstrated a 15.6x speed increase
compared to ARM-based implementations, validating the
efficacy of hardware/software co-design for real-time visual
processing in embedded systems [3].

2. RELATED WORK

Tisan et al. (2022) present a high-level synthesis (HLS)
approach for implementing quaternion least mean square
(QLMS) filters on FPGA hardware, aiming to reduce
computational complexity in high-dimensional signal
processing[4]. The system interfaces temperature (TMP36),
humidity (HS1101LF), and barometric pressure (BMP180)
sensors with the FPGA through high-resolution ADCs, enabling
real-time acquisition and time-stamped logging via USB-UART
communication [14]. Performance evaluations using both
floating-point and fixed-point representations highlight trade-
offs in accuracy versus resource utilization, with fixed-point
designs offering significant reductions in DSP, LUT, and flip-
flop usage. The work demonstrates HLS as a powerful tool for
rapid development of FPGA-based hypercomplex filters,
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contributing to broader accessibility for industrial applications
[4].

To overcome the limitations of software-based profiling in
FPGA streaming architectures, Forelli et al. (2024) propose a
novel high-level synthesis (HLS) methodology for dynamic
monitoring of FIFO channel utilization in machine learning
accelerators built with hls4ml. By leveraging new Vitis HLS
stream API features like .size() and .capacity(), their framework
enables real-time visibility of FIFO occupancy without relying
on time-intensive co-simulation. Experimental validation on
Pyng-Z2 and PXI platforms shows negligible resource
overhead, while maintaining reliable profiling—even in
complex CNN architectures with skip connections [5]. Focusing
on the matrix-vector multiplication kernel—a compute-
intensive component of the Helmholtz solver—they
demonstrate effective parallelization and pipelining on a Xilinx
UltraScale+ FPGA, achieving performance up to 5.58 GFLOPS
with single precision [11].

The design exemplifies FPGA-based embedded solutions where
programmable logic supports modular, scalable, and
application-specific development [15]. The work emphasizes
HLS optimizations such as loop unrolling, burst-mode memory
access, and AXI interfacing, which reduce latency and improve
throughput. Their findings suggest that FPGAs, when co-
designed with ARM-based architectures, offer scalable energy-
efficient acceleration for HPC weather simulations, with
promising implications for exascale systems [11]. This
approach enhances performance tuning, reduces development
time, and avoids the deadlocks often induced by inaccurate
FIFO sizing through traditional software tools [5].

Another key objective is to develop an efficient health
monitoring system that continuously tracks vital parameters like
heart rate and body temperature. The system includes an LCD
screen positioned near the patient for real-time data
visualization, along with a secondary device (such as a laptop,
desktop, or smartphone) that simultaneously receives and
displays live updates of the patient's health information [6]. Also
Integrating embedded systems into agricultural practices,
highlighting the necessity of precise irrigation to enhance crop
yield while minimizing resource consumption. Here they
Implemented on an Altera DE1 Cyclone V FPGA board using
VHDL programming, it also facilitates real-time monitoring and
control of irrigation through drip technology [19].

Design incorporates an 8-bit ADC0809 coupled with an LM35
temperature sensor, where the analog input is digitized and
transmitted via a UART module to a host PC for visualization
using Tera Term software [16].

The solution provides a scalable, low-power design ideal for
space-borne, biomedical, and industrial sensor networks.[16]
The system facilitates real-time monitoring and remote
observation by medical professionals or caregivers. This study
emphasizes the ease of access to FPGA-based design tools and
resources [6].

3. METHODOLGY

Earlier Vitis HLS was known as Vivado HLS in older versions.
The project is based on Vitis HLS 2023.2 version, as new 2024
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and 2025 version has merged into one software named Vitis.
The objective of this project is to work on small boards like
Xilinx Artix series and Basys 3. As Xilinx Zynq series, Xilinx
Pynq series, Xilinx Kintex UltraScale, Xilinx Zynq UltraScale+
MPSoC etc. supports AI/ML directly. Some of this series also
are capable of directly python coding. So, by working on Arty
A7 and implementing AI/ML is possible just needs to convert
C/C++ into RTL using HLS software [7]. Whereas other boards
can now directly work under Vitis version 2024 and 2025. So,
achieving the target of AI/ML on such boards is a great task.

While HLS significantly reduces time-to-market (up to 10 days
saved), designs using OpenCV-like HLS libraries incur higher
resource overheads, notably in LUTs and DSP usage [12].

3.1 Dataset

First, The Pune weather dataset was used, comprising
temperature and humidity data over 116,137 samples. The
dataset was taken from Kaggle[8]. Data utilized for Python
based and C++ based.

3.2 Linear Regression Model

The regression function follows the equation:

V=P +Bix1 + PeXz + ... + B (1)

where B represents the regression coefficients learned from the
training set.

4. UNDERSTANDING FPGA’s AND VITIS
HLS PLATFORM

One of the paper addresses this need by presenting a hardware-
accelerated weather prediction system implemented using Vitis
HLS targeting the Arty A7 FPGA. Using Verilog HDL,
designed control logic to process sensor inputs and trigger
appropriate outputs. The methodology includes simulation,
synthesis, and implementation on the Basys 3 board, ensuring
hardware-in-the-loop verification [20].

Through this framework, the study underscores the relevance of
FPGAs in embedded smart systems, offering low-latency
response times and customizable logic for handling
asynchronous inputs across multiple sensors. It addresses
limitations such as I/O constraints and lack of integrated
communication modules, and propose enhancements including
GSM and Wi-Fi connectivity [20].

The system employs a linear regression model for prediction
and is fully synthesized, co-simulated, and exported to Vivado.
Key involvements:
e Implementation of linear regression in C++ with weather
dataset.
e Computation of R? and MSE metrics within HLS
environment.
Export of RTL for Vivado integration.
Resource analysis (LUT, FF, BRAM, DSP).
e  Comparison with Python-based software models.



e Demonstrating FPGA suitability for low-power, real-time
applications.

By integrating DSP slices, mixed-signal blocks, and partial
reconfiguration capabilities, these architectures enable real-time
processing and adaptability in applications ranging from
precision agriculture and environmental monitoring to
embedded medical systems. The authors further highlight the
growing feasibility of FPGA-based solutions through platform
comparisons, power benchmarks, and implementation strategies
across popular vendor families [17].

As we work on Vitis HLS creating project is primary step, so
that we define code names as Ir.cpp, Ir.h and test Ir.cpp
indicating (Ir) as Linear regression. Also declaring which board
is targeted is defined as part number. For this project I have
targeted Arty A7 board which is part number as
xc7al00tcsg324-1. Flow target is set as Vivado IP flow Target.
Clock period is set as 10s. The process involves various steps in
Vitis HLS that are C Simulation, C Synthesis, Co-simulation,
Export RTL(Register Transistor Level) and Implementation.
For using Vitis HLS there are 3 file importantly needed that are
header file, .cpp file, test.cpp file. If using a dataset then place it
under testbench folder with test.cpp, header file. Whereas .cpp
file while be placed in sources folder. We can also use C
language then it will be header file, .c file, test.c file.

#ll Flow Navigator X

4 CSIMULATION
» Run C Simulation
P Reports & Viewers
C SYNTHESIS
» Run C Synthesis
4 Reports & Viewers
Report
Function Call Graph
Schedule Viewer

|

C/RTL COSIMULATION
» Run Cosimulation

P Rep % Viewers

4 |MPLEMENTATION

Fig. 1 Flow Navigator that involves steps
4.1 Evaluation Metrics

The coefficient of determination (R?) is a statistical metric that
evaluates how well a regression model fits a given dataset. In
the context of regression analysis, R? indicates the extent to
which the predicted values from the model match the actual
observed values. It essentially reflects how effectively the
regression line represents the real data points. This measure is
particularly valuable when assessing the predictive accuracy of
a model or when validating hypotheses. While there are several
versions of R?, the one discussed here is among the most
commonly used in practice.[9]

R? =1 (SSR) )
=7 \7Tss @
2 _ q _ (Sumof Squared Residuals

R*=1 ( Total Sum of Squares ) (3)
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This equation (2) can also be represented as
n ~
Zizl(Yi - y)?

RP=1-22—
Z?=1(yi _yi)z

(4

Mean Squared Error (MSE) is one of the most commonly used
evaluation metrics in regression models, particularly when the
target variable is continuous. It quantifies error by calculating
the average of the squared differences between the actual values
(i) and the predicted values (). Mathematically, it is defined
as:

MSE = 1 —9.)? 5
- i =) (5)
i=1

Where in equation (4):
e 1 is the total number of data points,

e y;is the actual observed value for the i-#4 data point,

ey, is the predicted value for the same point.

The term (yi - §i) is known as the residual error, representing
how far the prediction is from the ground truth. Since the
residuals are squared, MSE is sensitive to outliers—even a
single large error can disproportionately affect the overall
value.[10] This makes MSE, also known as L2 loss, less robust
to datasets with extreme deviations or anomalies compared to
other metrics like Mean Absolute Error (MAE).

4.2 HLS Implementation

Code was written in C++ and imported into Vitis HLS.
Key functions include:
e linear regression(...): learns model coefficients

e predict(...): performs real-time prediction
e calculate r2(...), calculate_mse(...): computes metrics
Pragmas used:

#pragma HLS INTERFACE s axilite port=return
bundle=CTRL

#pragma HLS INTERFACE m_axi depth=100 port=x
offset=slave bundle=DATA

These optimize memory access and synthesis behavior.

5. DETAILED EXPLANTION ON
PERFORMANCE

5.1 Evaluation on C Simulation

In FPGA-based hardware design, especially with Vitis
HLS, ap_fixed is a fixed-point data type that enables efficient
numerical computations while conserving logic resources.
Unlike floating-point formats, which offer a wide dynamic range
at the cost of hardware complexity, ap_fixed allows designers to
explicitly define the total bit width and number of fractional bits.



From Fig.2 to Fig.4 represents the stepwise reports or outcomes
generated.

Fig. 2 Simulation results

5.2 Reports on C Synthesis

INFO: [VHDL 208-304] Generating VHDL RTL for linear_regression.

INFO: [VLOG 209-307] Generating Verilog RTL for linear_regression.

INFO: [HLS 200-790] **** Loop Constraint Status: All loop constraints were satisfied.
INFO: [HLS 200-789] **** Estimated Fmax: 143.28 MHz

INFO: [HLS 200-111] Finished Command csynth_design CPU user time: 3 seconds. CPU
system time: 8 seconds. Elapsed time: 35.057 seconds; current allocated memory: 99.125
MB.

INFO: [HLS 200-112] Total CPU user time: 6 seconds. Total CPU system time: 10
seconds. Total elapsed time: 39.021 seconds; peak allocated memory: 234.402 MB.
Finished C synthesis.

This above report shows time and memory used for performing
C synthesis.

5.3 Co-simulation results

Fig. 3 Co-simulation reports

Co-simulation is a crucial validation step used to confirm that
the RTL (Register Transfer Level) output generated from high-
level C/C++ code functions as intended. It involves running
both the C simulation and the RTL simulation in parallel, where
the C simulation acts as a benchmark to verify the correctness
of the synthesized hardware show in Fig.3.

5.4 Export RTL results

Fig. 4 Export RTL reports
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This Fig.4 clearly mentions that C++ code has been successfully
converted into RTL(Register Transfer Level).

Table. 1 Code Snippet

Importance
Component

Core computation module

linear regression () implemented in hardware

Dataset Shows dataset used for testing

Model accuracy metrics, matches

mse, r2 outputs Python validation

Confirms functionality, matches

Prediction loop software/hardware flow

Integration point for hardware
#include "lr.h" block or IP

5.5 Utilization of resources

Fig. 5 Shows how resources are utilized

Fig.5 represents buffer, multiplers, platform files used in
building the project.

Resource Usage

Fig. 6 Resource Usage

The efficient utilization of FPGA resources is particularly
shown in Fig.6 the low percentage of DSPs(Digital Signal



Processing), LUTs(Look-Up Table), SRLs(Shift Register
LUT), BRAM(Block Random Access Memory) and FFs(Flip-
Flop) consumed, underscores the optimal design choices
enabled by Vitis HLS directives. The pipelining and unrolling
strategies effectively exploited the inherent parallelism of the
linear regression algorithm, leading to the observed speedup.
The seamless integration of the Vitis HLS generated IP into
Vivado highlights the maturity of the HLS design flow, enabling
rapid proto typing and deployment of complex algorithms onto
hardware platforms without delving into low-level RTL coding.

FPGA implementation in Verilog achieved low power
consumption (0.129 W), verified through resource utilization
metrics including 792 LUTs and 2 DSP slices.[18] In control
systems, FPGA-based PID controllers, stepper motor drivers,
soft-core processors, and PWM generators, highlighting real-
time responsiveness, configurability, and resource optimization
let showcasing simulation results and synthesized
implementations from various FPGA platforms, underscoring
the versatility of FPGAs across industrial domains.

Fig. 7 Final summary of Resource Utilization.
5.6 Export and Integration with Vivado

After co-simulation, the RTL was exported as zip file of export
and store it at a location and then import it into Vivado by unzip
the folder that consist of constraints, doc, hdl, misc, xgui and
component. The IP was visible in the IP catalog and integrated
into a custom design. Screenshot of the Vivado block design and
resource report will be included.

While data-flow—centric designs with regular loops show parity
with  hand-written =~ RTL, pointer-intensive  recursive
implementations suffer significant latency degradation. Their
findings reveal that enhancing HLS support for dynamic data
structures requires automated analysis of memory access
patterns, dependency tracking, and average-case heap
sizing.[13] Hybrid FPGA—Arduino design enables precise
environmental  monitoring  while  promoting  green
communication through power-efficient embedded logic.[18]

6. PYTHON IMPLEMENTATION
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Train the linear regression model using the Pune weather dataset
on a Python platform (e.g., Jupyter Notebook with scikit-learn)
to determine optimal floating-point B coefficients. Validate the
accuracy of this software model.

Python using pandas, NumPy, scikit-learn.

6.1 Workflow

Data loaded and preprocessed with pandas.

Features selected and split into training/testing.

Linear Regression from scikit-learn is fitted and evaluated.
Metrics printed and predictions visualized using matplotlib.

6.2 Key Advantages
e Simple, high readability.

e Quick experimentation and visualization.
e  No hardware resource constraints.

Linear Regression: Actual vs Predicted Temperature

S
.
-

i

10 15 20 25 30 35 40
Actual Temperature (*C)

w
&

8

~N
)

Predicted Temperature (*C)
~
°

&

-
-
-

-
-,
-
-

Fig. 8 Output on Jupyter notebook from python code.

Here Fig.8 shows how python interpreted code has successfully
generated desired output based on R? and MSE.

7. RESULTS

To assess the novelty of the proposed Vitis HLS—based linear
regression accelerator, we compared it with recent works in
IEEE, Springer, and Elsevier publications where, FPGA-based
designs such as the QLMS filter on a Zynq FPGA and an HLS-
based image processing system on a ZYNQ-7000 SoC offer
good power efficiency but target other domains.[4] Our design
on the same board achieves R?=0.60, lower MSE =047,
0.129 W power, and <0.1 ms latency. Compared to a Python
software approach (R*=0.64, MSE=28.01, ~5 W, > 1 ms) our
hardware method offers competitive accuracy with substantial
gains in energy efficiency and speed, making it suitable for real-
time, low-power deployment. Hence this also shows
implementation of algorithm and generation of IP block via
Viavdo HLS/ Vitis HLS.[1] By fulfilling the gaps of errors and
moving ahead with comparison is shown down below in table
format.



Table. 2 Comparison between Python and Vitis HLS

Python Vitis HLS
Parameters
Power High Low
Prediction model.predict y =slope * x
(X_test) + intercept
Hardware Pragmas N/A Used for
ports,
pipelining
Latency per sample >1 ms <0.1 ms
(interpreted) (hardware
pipeline)
Parallelism Limited Native (via
(depends on pipelining/unr
CPU) olling)
Dataset Used Pune.csv dataset
(real-world) (X={1..5})
. High (IP
Resuability Low block)
Reconfigurability Software Hardware re-
change synthesis or
reconfig
R?value 0.64 0.60
MSE value 8.01 0.47

Both implementations provide valid linear regression predictors
for weather-related data, but hardware acceleration via Vitis
HLS outperforms conventional software in terms of latency,
energy efficiency, and suitability for embedded and VLSI
systems. For rapid research, prototyping, and feature
exploration, Python remains unmatched, but for deployment
and fast inference on devices, the HLS-generated accelerator is
optimal.

This Approach presents a detailed analysis on accuracy of the
predictions, the performance gains achieved through hardware
acceleration, and the resource utilization on the target FPGA.
All results are contextualized with a comparison against a
Python-based software model to highlight the advantages of our
proposed approach.
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Fig. 9 IP block in vivado.

The Fig.9 shows that the export file has been successfully
imported into vivado, where the IP has been called from
respository and linear regression block can be further used for
implementing different projects.

8. CONCLUSION

This paper demonstrated a lightweight, high-efficiency
hardware accelerator for weather prediction using Vitis HLS.
The design achieves high prediction accuracy and low hardware
footprint on the Arty A7 FPGA. As evidenced by favorable R-
squared and Mean Squared Error values, which showed only
negligible degradation compared to a software reference model.
Resource utilization analysis confirmed the design’s
lightweight nature and efficiency, consuming minimal amounts
of LUTs, FFs, BRAMs, and DSPs on the Arty A7. The findings
affirm the feasibility and efficiency of Vitis HLS for real-time,
low-power weather forecasting systems.

Future scope: Future work includes implementing advanced
models like MLP and SVM, integrating live sensor inputs for
real-time forecasting, and exploring deployment on Zynq SoC
and other high-performance embedded platforms. Energy
profiling and multi-model FPGA fabric designs are also areas
of future interest.

Building upon the successful demonstration of this lightweight
accelerator, several promising avenues exist for future research
and development to further enhance its capabilities and
applicability:

o Integration with Real-time Sensor Data Streams

e Exploration of Advanced Machine Learning Models
e Dynamic Reconfiguration Capabilities

e Energy Efficiency Optimization

e Scalability for Larger Datasets/Features

e Comparison with Other Platforms
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