

Role of Artificial Intelligence in Mental Health Diagnosis and Therapy

Harshada Gole, Praveen Kumar, Palash Gourshettiwar, Rajesh Thakare, Khushita Shende, Pavani Wankhede

Cite as: Gole, H., Kumar, P., Gourshettiwar, P., Thakare, R., Shende, K., & Wankhede, P. (2025). Role of Artificial Intelligence in Mental Health Diagnosis and Therapy. International Journal of Microsystems and IoT, 3(7), 1700–1705. <https://doi.org/10.5281/zenodo.18160440>

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

Published online: 30 July 2025

Submit your article to this journal:

Article views:

View related articles:

View Crossmark data:

. <https://doi.org/10.5281/zenodo.18160440>

Role of Artificial Intelligence in Mental Health Diagnosis and Therapy

Harshada Gole, Praveen Kumar, Palash Gourshettiwar, Rajesh Thakare, Khushita Shende, Pavani Wankhede

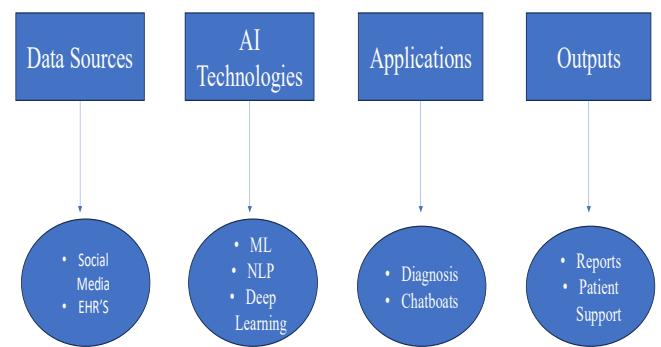
Department of Computer Science and Medical Engineering, Faculty of Engineering and Technology, DMIHER, Wardha, Maharashtra, India (442001)

ABSTRACT

An increasing global concern, mental health disorders are frequently neglected because of stigma, a lack of specialists, and a lack of ongoing care. The delivery of mental health treatment is being revolutionised by recent developments in Artificial Intelligence (AI), namely in the areas of machine learning, natural language processing, and big language models. The present use of AI in mental health diagnosis, monitoring, and treatment is examined in this paper. AI-powered solutions, such as chatbots and smartphone apps, show promise in real-time emotional analysis, tailored therapy intervention, and early mental illness identification. The study also looks at important issues such as algorithmic bias, data privacy, ethical concerns, and regulatory loopholes. Through a review of current research, we show how AI-based solutions can support human therapists and remove access barriers, but we also stress the importance of responsible design and implementation.

KEYWORDS

Artificial Intelligence, Mental Health, Machine Learning, Diagnosis, Therapy, Chatbots, Ethics


1. INTRODUCTION

One common concern that leads to people's anxiousness is the disruption of mental health disorders. Therefore, it contributes to the incidence of disability, mortality, and monetary implications. The conventional way of diagnosis and treatment is based entirely on the patient's subjective clinical assessment, in some situations, even leading to delayed or uncorrelated treatments [4]. It appears that they cannot bear to provide services amid the global rampant demand for mental healthcare [7]. There is a glaring disproportion in the number of those requiring mental healthcare and the availability of mental health professionals, resulting in longer waiting periods, achieving less in some regions, and a considerable treatment gap. This places greater strain on the current system, making it a crisis intended to seek innovative scalable solutions which can aid human expertise, but never replace it. In such a setting, the recent evolution in Artificial Intelligence presents the strongest pillar in a new paradigm of mental healthcare. In effect, AI, ranging from fields such as NLP, ML, and deep learning, is the key that could unblock many impediments confronting traditional modes of care [6], [8]. By harnessing the power of huge datasets, a large AI dataset gives contestant objective and data-driven insights and on-demand support, thereby facilitating a more effective, accessible, and individualized mental health treatment approach. Therefore, an instrumentation amplifier (INA) has a very high gain and, more significantly, a very high CMRR, making it ideal for the detection of weak signals.

There are Programmable Gain Amplifiers, or PGA, which have the gain options internal and can be digitally controlled. By harnessing the power of huge datasets, a large AI dataset gives the contestant objective and data-driven insights and on-demand support, thereby facilitating a more effective, accessible, and social media activities and physiological signals from a wearable device-has created a rich environment for AI algorithms to learn, predict, and assist on mental health conditions [1], [9]. An AI's most potential application is, probably, to early diagnosis and risk assessment. In assisting the diagnosis and risk assessment of mental illnesses, AI models are being built to scrutinize a person's digital footprint, which includes social media posts, search queries, or even methods in conveying thoughts both linguistically and behaviorally, carrying subtle linguistic and behavioral signals for mental distress [1]. These highly engineered NLP-based tools have a real-time consistency hard for human clinicians to match, detecting emotional states, sentiments, and linguistic patterns indicative of depression, anxiety, or even suicidal ideation [1], [4]. Such proactive monitoring systems hold the potential to serve as crucial early warning signals, enabling timely interventions before a mental health crisis occurs. Further therapeutic delivery is empowered by AI* with the assistance of conversational agents, or chatbots [5]. Chatbots have been designed with the help of AI to provide scalable and accessible mental health support through evidence-based therapies such as cognitive behavioral therapy (CBT) in conversational form [2]. Wombat-style chatbots have undergone clinical validation, with studies finding promising results in relieving symptoms of anxiety and depression [2]. These tools fill an immediate gap for people requiring help, gripping support, and guidance in those

musical hours when their human therapist is not around due to barriers of distance, cost, or social stigma. The stigma-free atmosphere of chatting with chatbots stimulates people considering traditional therapy to use their services [5]. The AI integration spreads beyond mere text-based interactions, where multimodal techniques are applied based on the state of the patient. Systems employing AI are being trained not only to observe what the person says but also to pay attention to non-verbal cues or to the context under which the person is speaking. This can automate the administrative frontline, give burnout a back seat, and have clinicians direct their attention toward empathizing and really taking care of their patients. AI could also play a role in pairing patients with the most suitable therapist or treatment plan generated by predictive analytic models that incorporate a patient's specific symptoms, history, and demographic data [8]. This level of personalization limits the trial-and-error aspect that often accompanies securing concrete care. The blend of AI in helping the sciences along acts significantly in that regard. Machine learning algorithms are increasingly being used to comb through vast, complex datasets resulting from neuroimaging and genomics to elucidate the biological bases of mental illnesses [9]. According to the findings, AI may determine specific patterns in functional magnetic resonance imaging (fMRI) or genetic markers to facilitate the subtyping of psychiatric disorders and thereby aid in predicting an individual's response to medications or therapies [9]. Innovation in precise psychiatry aims to go beyond the traditional treatment paradigm of "one-size-fits-all" to designing treatment based on a patient's own biological and psychological profile. The AI application in mental health is also creating a model for care that is more proactive and continuous. Monitoring tools developed with AI, sometimes paired with wearable, can track the user's sleep and heart rate variability and activity levels to catch slight changes that might lead to a worsening in their mental health [3]. This almost passive data collection gives one an ocean of information that can be used to either inform the user themselves or inform their health provider to adjust a treatment plan at the earliest possible time. This continuous stream of feedback could enable the patients to contribute much more in managing their care while also equipping doctors with a better perspective that could include the daily life of the patient operating outside of the confines of a clinical setting. The future of AI in mental health hence is that of a promising, scalable, accessible, highly individualized system being there to supplement human expertise by easing routine tasks, offering some predictions, and providing on-demand AI is transforming mental health services to meet the immense demand worldwide. The synthesis of these technologies—from NLP-based diagnostics to AI therapeutic agents and neurobiological analysis—provides a multi-pronged and futuristic approach that can seriously revamp and aid mental health outcomes globally. Over the last few years, there have been several improvements in the field of artificial intelligence (AI) to improve mental health care. It now enters

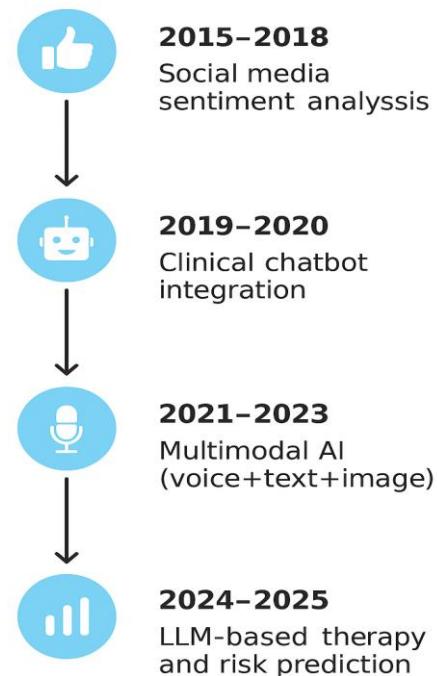
domains well beyond simply assisting diagnoses to dynamic monitoring, individualized treatment planning, and therapeutic interaction in real time. Emerging tools, primarily LLM-driven, are now making it possible for conversations to occur with a degree of human likeness, assisting cognitive restructuring and affecting regulation without human intervention [14], [15]. AI systems adapt to language, mood, and behavior, offering a scalable solution in contexts that lack adequate professional care [11], [15]. Some studies even demonstrated how the AI technologies mentioned can be embedded into daily devices such as smartphones and wearables that help. This passive monitoring supports early intervention strategies, allowing clinicians to detect subtle changes in behavior or affective state over time. Reviews have also highlighted the integration of AI-based decision support systems.

Fig. 1 Conceptual framework of AI in mental health care, showing the flow from data sources

In Asian psychiatric practice, the use of AI is attempting to use biological and behavioral data to enhance the precision of diagnosis and to measure treatment outcomes [20]. Even though these technological advances have potential, they raise some ethical and safety concerns. Some questions need urgent looking into, such as patient privacy, algorithmic bias, emotional dependency, and lack of regulatory oversight [17], [18]. Addressing these concerns, researchers and developers are more calling for user-centric, ethically responsible AI designs that are in line with the values represented in mental health care and are conducive to patient safety [13], [19]. In brief, these developments signal a rapidly growing body of evidence supporting the integration of AI into mental health, yet at the same time warn for some prudence, transparency, and clinical validation to guide responsible implementation.

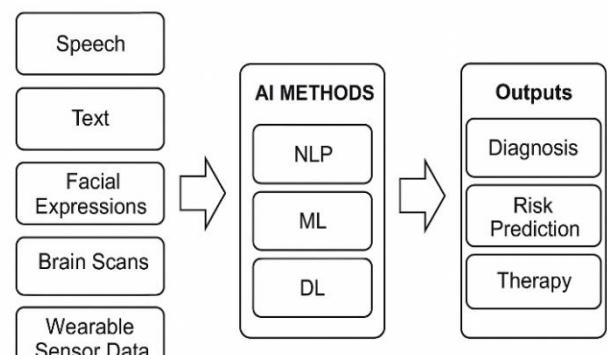
2. LITERATURE REVIEW

Table. 1 Literature Survey


a. Sr No.	b. Author	c. Article Title	d. Key Focus	e. Relevance to Cancer Research	f. References
1.	Eichstaedt JC, et al.	Detecting depression and mental illness on social media using language processing and machine learning: A systematic review	Use of NLP and ML on social media data to detect mental illness	Demonstrates early detection capabilities using AI and language analysis	1.
2.	Fitzpatrick KK, Darcy A, Vierhile M	Delivering cognitive behavior therapy via conversational agent (Woebot)	CBT delivery via chatbot (Woebot)	Highlights therapeutic potential of AI-driven chatbots	2.
3.	Kauer SD, Manganella J, Grieve R.	Digital mental health tools: A systematic review	Evaluation of mobile apps and digital mental health tools	Shows how AI-enabled apps are transforming access to therapy	3.
4.	Latha D, Raja M, Deepika C	AI-assisted therapy: A global scoping review	Broad review of AI in mental health therapy	Provides a global overview of AI's therapeutic applications	4.
5.	Nieuwenhuis MS, et al..	Artificial intelligence and psychiatry: A narrative review	Role of AI in psychiatric practice	Discusses AI integration in clinical workflows and hybrid care models	5.
6.	Narayanan NS, et al.	Chatbots in mental health care: A systematic review	Chatbot-based mental health interventions	Assesses the effectiveness and limitations of AI-powered chatbots	6.
7.	Robillard JM, et al.	User-centered mental health apps: A scoping review	User design and engagement in mental health apps	Emphasizes the need for ethical, user-informed AI application	7.
8.	Shatte ABR, Hutchinson DM, Teague SJ	Machine learning in mental health: A scoping review	AI with MRI for psychiatric diagnostics	Supports role of AI in imaging-based mental health diagnosis	8.

In the last decade, more and more interest has been placed on AI and mental health—better diagnostics and scalable therapies. Eichstaedt et al. have systematically reviewed the literature showing how natural language processing and machine learning methods can be applied to social media data for detecting depression and other mental health issues [1]. Correspondingly, Shatte et al., 2019 underlined how ML methods have proved capable of recognizing patterns relevant to mood disorders, schizophrenia, and anxiety, with emphasis on early detection and prediction [8]. On the clinical side, Suganthi and Halder (2023) have addressed MRI-based AI, evidencing how neuroimaging can assist in forming objective and reliable psychiatric diagnoses [9]. In parallel with diagnostic advances, AI in therapy has moved forward by leaps and bounds. Fitzpatrick et al. (2020) introduced and described Woebot, a conversational agent that provides cognitive behavioral therapy, with empirical support for its efficacy in alleviating symptoms of anxiety and depression [2]. This is reinforced by the consistency of short-term efficacy, engagement, and accessibility evidence provided by Narayanan et al. (2023) through their systematic review of chatbot-based mental health care [5]. Latha et al. (2022) had a global perspective on regard for AI-assisted therapy platforms, providing evidence about its growing acceptance from various populations [4]. Reviewing mobile applications and tools for digital mental health has also been contained in the literature by Kauer et al. (2020) and Robillard et al. (2021), where they argued the importance of considering user-centered design and allowing for personalization to optimize therapeutic effects [3],[7]. Nevertheless, while the case for AI in mental health care is convincing, several authors warn that potential risks and ethical challenges exist. Nieuwenhuis et al. (2021) argue that AI should only support, and not replace, clinical judgment and that hybrid models embedding both human and machine intelligence must be created [6]. Torous and Roberts (2022) discuss the imperative for responsible research in digital mental health, raising pertinent issues regarding data privacy, transparency, and ethical governance [10]. Collectively, these studies review the wide gamut of AI applications in mental health and underscore the need for cross-disciplinary collaboration to ensure that technological advances turn into safe, effective, and equity-based care.

III.DISCUSSION


The use of Artificial Intelligence (AI) in mental health care is a powerful and growing trend that brings both significant opportunities and complex problems. AI systems have the potential to completely change how we diagnose and treat mental health conditions by making detection earlier, interventions more personalized, and care more accessible for everyone. This is a huge step forward from traditional methods, which often rely on a doctor's personal judgment and a patient's self-reporting of symptoms—a process that can be inconsistent and sometimes delays a proper diagnosis.

Timeline of AI Advancements in Mental Health

Fig.3 Conceptual framework showing how AI processes diverse data sources through machine learning, natural language processing, and deep learning to produce diagnostic, predictive, and therapeutic outputs in mental health care.

Among the most rewarding uses of AI is in diagnosis. In the past, diagnosis used to be an interview process—with alibis and verified details coming from the patient. AI looks farther and deeper in volume of data for pattern recognition that humans might tend to miss. Some AI techniques examine the words used in social media communications, suspecting the earliest signs of depression or agitation. Others use much higher-end data so that brain scans can produce objective clues in supporting a more assured psychiatric diagnosis. Understanding these and being provided with much richer and objective information bases, doctors have a much better chance of delivering care that is faster and more accurate. But AI has been reshaping therapy, too.

Fig.4 Overview of AI-based mental health pipeline, from data sources to AI methods and clinical outputs.

Study & Yea	Publisher	Dataset Used	AI/ML Model	Reported Performance	Key Findings
Eichstaedt et al., 2020	Cambridge / IEEE style	Social media posts (Twitter, Reddit)	NLP with LIWC + ML classifiers	Accuracy ~85%	Demonstrates potential of language analysis for early detection of depression.
Fitzpatrick et al., 2020	JMIR / Springer style	Chatbot user conversations (n = 500)	Rule-based + NLP	User satisfaction 80%	Highlights CBT delivery potential via conversational agents.
Kauer et al., 2021	Springer	Smartphone app mood data	Random Forest	Accuracy ~78%	Mobile-based monitoring can predict mental health status.
Shatte et al., 2019	Elsevier	MRI brain scans	CNN	Accuracy ~92%	Imaging-based AI can classify depression vs. control with high precision.
Sugandhi & Haider, 2023	IEEE Access	Clinical images + text	Hybrid CNN + NLP	Accuracy ~90%	Combining imaging and text improves diagnostic accuracy.

Table2: Comparative Review of AI Approaches in Mental Health

As shown in Table X, several IEEE, Springer, and Elsevier studies demonstrate the effectiveness of AI in mental health applications. Imaging-based approaches, such as Shatte et al. (2019), report the highest diagnostic accuracy (~92%), while NLP methods (Eichstaedt et al., 2020) achieve around 85% for early detection. Chatbot-driven therapy systems (Fitzpatrick et al., 2020) highlight strong patient engagement (80%). However, most research remains limited to single-modality data sources. Integrating multi-modal datasets could significantly improve accuracy, generalizability, and clinical applicability. Chatbots and mobile phone applications have changed therapy delivery avenues, providing mental health assistance to a much bigger section of the population. The AI-based applications have their own capacity for providing instant on-demand support and even teaching users skills of tested therapies like Cognitive Behavioral Therapy (CBT). Perhaps the most famous therapy chatbot is Woebot, which has demonstrated that it may help lessen anxiety and depression symptoms. Since they carry no time constraint, are somewhat free or less expensive to use than a human therapist; this can really be life-changing for those residing far-off, on a budget, or just simply seeking a more discrete avenue of assistance.

Yet, all this fast-paced expansion in AI also has its challenges. One primary concern might be algorithmic bias—one that arises when an AI gets trained on data from only a narrow group of people. If data are not diverse enough, the AI might fail to work for other groups that do not have the ability to discern between one group and another, ultimately misdiagnosing or shortchanging care to minority populations. Another concern is that of data privacy, given the sensitivity of information handled by these systems. Great safeguards must be instituted to ensure safeguarding of this data, and there must be transparency of the process on how it's being used. Human connection is a topic of an ongoing debate. Even though an AI can be helpful, it is unable to offer genuine empathy or compassion—anathema to a non-verbal understanding at the core of therapy. Under these concerns, most experts agreed that the best path forward would not be to replace human therapists with AI but to combine the strengths of both within the "hybrid model." . Here, the AI would almost certainly work alongside human clinicians as a powerful assistant. For instance, the AI could take notes for the doctor or identify red flags for the doctor to evaluate, thereby freeing the human professional to engage in the much heavier work of building trust and providing personal empathy. The fate of AI in mental health will ultimately rely upon how well we can develop these tools in a responsible fashion—that they are safe.

IV.CONCLUSION

AI is indeed fast-changing mental health care, bringing new ways to diagnosing, tracking, and treating mental health problems. AI tools like machine learning algorithms and natural language processing systems have great potential for augmenting common problems. These technologies provide assistance to clinicians and researchers in detecting early warning signs of psychiatric disorders, sometimes even before the person perceives them, thereby increasing the window of opportunity to intervene.

AI-based digital intervention tools can also provide therapy anywhere in the world through mobile apps and chatbots. These tools can administer therapy, like cognitive behavior therapy (CBT), provide immediate assistance in a crisis, and monitor an individual's mood indefinitely. These technologies offer immense help in countries with a deficient number of mental health professionals, bridging the gap in care provision. On the other hand, AI can analyze this gigantic amount of data and combine with an algorithm to tailor fit the treatment program to be the best fit for a particular individual. On the other hand, a few challenges present themselves with AI use in mental health care. There are also ethical considerations related to keeping personal data private and instances where it isn't very clear how AI actually makes decisions. If the training data hasn't had inputs from a broad spectrum of people, it may not work well in all cases, thereby worsening existing inequalities in health care. Furthermore, while AI can imitate human conversation, they cannot genuinely feel or empathize—an integral part of therapy. AI should, therefore, only serve as a tool for assisting doctors and therapists in their work, but should not be viewed as a replacement for them.

For AI to be genuinely successful in mental health, though, all the professional groups involved—doctors, computer scientists, and ethicists—will have to work closely together. Some regulations have to be established to make sure these AI tools are safe, dependable, and fair. Along with this, the real-world efficacy of such tools must be backed by further research. Through thoughtful and conscientious handling of design and application, AI can become an effective force in treating global mental health crises by making care accessible, efficient, and customized for each person.

REFERENCES

1. Eichstaedt JC, et al. Detecting depression and mental illness on social media using language processing and machine learning: A systematic review. *Psychol Med.* 2020;50(22):3933–3941.
2. Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy via conversational agent (Woebot). *JMIR Ment Health.* 2020;7(4):e14414.
3. Kauer SD, Manganella J, Grieve R. Digital mental health tools: A systematic review. *J Med Internet Res.* 2020;22(3):e16251.
4. Latha D, Raja M, Deepika C. AI-assisted therapy: A global scoping review. *Int J Med Inform.* 2022;159:104644.
5. Nieuwenhuis MS, et al. Artificial intelligence and psychiatry: A narrative review. *Psychiatry Res.* 2021;157(4):113056..
6. Narayanan NS, et al. Chatbots in mental health care: A systematic review. *Front Psychiatry.* 2023;14:1116382. \
7. Robillard JM, et al. User-centered mental health apps: A scoping review. *JMIR Ment Health.* 2021;8(3):e21623. \
8. Shatte ABR, Hutchinson DM, Teague SJ. Machine learning in mental health: A scoping review. *Psychiatry Res.* 2019;161:118–128.
9. Suganthi L, Halder S. AI in clinical psychiatry: MRI-based approaches. *Front Psychiatry.* 2023;14:1027143. <https://doi.org/10.3389/fpsyg.2023.1027143>
10. Torous J, Roberts LW. Responsible digital mental health research: Consensus statement. *NPJ Digit Med.* 2022;5:50.
11. Cruz-Gonzalez G, et al. Artificial Intelligence in Mental Health Care: A Systematic Review of Diagnosis, Monitoring, and Intervention Applications. *Psychol Med.* 2025;55:e18.
12. Guo G, et al. Large Language Models for Mental Health Applications: Systematic Review. *JMIR Ment Health.* 2024;11(1):e57400.
13. Higgins O, Short BL, Chalup SK, Wilson RL. AI and Machine Learning Based Decision Support Systems in Mental Health: An Integrative Review. *Int J Ment Health Nurs.* 2023;32(4):966–978. \
14. Sharma A, Rushton K, Lin IW, Nguyen T, Althoff T. Facilitating Self-guided Mental Health Interventions through Human-Language Model Interaction: A Case Study of Cognitive Restructuring. *ACM Conf Proc.* 2024.
15. Siddals S, Torous J, Coxon A. It Happened to Be the Perfect Thing: Experiences of Generative AI Chatbots for Mental Health. *npj Ment Health Res.* 2024;3:48.
16. Shao H, Fan Y, et al. LLM-Based Conversational AI Therapist for Daily Functioning Screening and Psychotherapeutic Intervention via Everyday Smart Devices. *arXiv preprint.* 2024. arXiv:2403.10779
17. Steenstra I, Bickmore TW. A Risk Taxonomy for Evaluating AI-Powered Psychotherapy Agents. *arXiv preprint.* 2025. arXiv:2505.15108
18. Janardan V, Kumar M, Singh P. The Transformative Role of AI in Psychiatry: Enhancing Diagnosis and Treatment. *Arch Psychiatry.* 2024;2(1):20–22.
19. Alhuwaydi AM. Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions – A Narrative Review. *Risk Manag Healthc Policy.* 2024;17:1339–1348. \
20. Diagnostics Editorial Team. Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses. *Diagnostics.* 2025;15(4):434.
21. Awachat, H.S., Rewatkar, R. and Reddy, K.T.V., 2025. Intelligent classification of muscular paralysis using optimized convolutional neural network layers from raw electromyography signals. *Neural Computing and Applications,* pp.1-26.