

The Role of Virtual Reality in Rehabilitation Therapy: Innovations and Challenges

Pavani Wankhede, Subodh Daronde, Khushita Shende, Harshada Gole

Cite as: Wankhede, P., Daronde, S., Shende, K., & Gole, H. (2025). The Role of Virtual Reality in Rehabilitation Therapy: Innovations and Challenges. International Journal of Microsystems and IoT, 3(4), 1637–1642. <https://doi.org/10.5281/zenodo.18150110>

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

Published online: 15 April 2025

Submit your article to this journal:

Article views:

View related articles:

View Crossmark data:

<https://doi.org/10.5281/zenodo.18150110>

The Role of Virtual Reality in Rehabilitation Therapy: Innovations and Challenges

Pavani Wankhede, Subodh Daronde, Khushita Shende, Harshada Gole

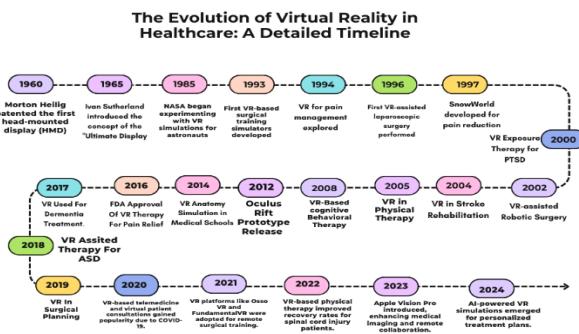
¹Department of Computer Science and Medical Engineering, Faculty of Engineering and Technology, DMIHER, Wardha, Maharashtra, India 442001.

ABSTRACT

Virtual Reality (VR) in Rehabilitation has improved the efficiency of the treatment and therapy given to the patients by providing interactive and immersive environments. This paper studies the recent use of VR in fields like neurological, musculoskeletal, and cognitive rehabilitation. It compares the both benefits and the issues which affect the use of this technology broadly. Studies state that VR-based therapy works better in the areas like improving movement, reducing pain, and boosting brain recovery. However, despite having potential VR faces many challenges for incorporating it in routine practice like high costs, no common standards, and differences in access across hospitals. If solved, it can drive digital and personalized healthcare. Future use must focus on innovation, affordability, and patient outcomes.

KEYWORDS

Virtual Reality, Rehabilitation Therapy, Immersive Technology, Patient Engagement, Therapy Adherence, Healthcare Innovations.


1. INTRODUCTION

Virtual Reality (VR) technology introduced new and innovative approaches for patient care which provide alternatives for the treatment plan of the patients, it provides more interactive experiences that support healthier, fuller lives. Studies shows that the way therapy is given affect many areas of rehabilitation process, like patient involvement, motivation, and recovery success. It lets patients practice exercises that feel like real-life tasks in an interactive, virtual setting. These simulations encourage physical activity consistency while maintaining the interest of the patient throughout the day. Resulting, increase in awareness for their progress and get a clearer understanding for their future treatment plans of their therapeutic journey.

The use of VR in rehabilitation has proven particularly important for patients with neurological conditions, those with physical disabilities, and individuals receiving cognitive treatment after injuries. In these cases, VR is not merely a substitute for standard therapy; it is a dynamic and responsive experience that improves functional outcomes and keeps patients engaged. This study will interest disabled, physically challenged, and memory-challenged patients, especially young people. It provides them with an engaging and stimulating therapeutic experience. This technology not only increases patient engagement but also enables the development of personalized treatment plans tailored to specific medical conditions (Naqvi et al.).

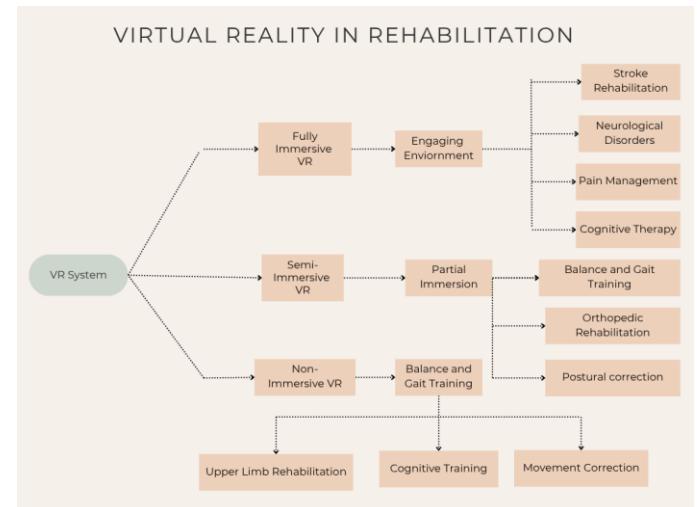
VR therapy is superior in terms of effectiveness when compared to the conventional approaches to therapy in the sense that this practice has demonstrated that it can enhance levels of motor

functioning, cognitive functioning, and emotional functioning. This is because, though there are negative judgments and assessments present, it is also characterized by positive judgments and evaluations (Kim et al., 2019). Virtual rehabilitation has proved useful to stroke rehabilitation patients (Aderinto et al., 2023) to patients with spinal cord injuries, as well as with musculoskeletal diseases. The future outcomes of VR therapy applied to various patients are a good indicator of what changes might take place long-term. The malleability of VR therapy in the treatment of a variety of rehabilitative disorders.

Fig. 1 The Evolution of VR in Healthcare

Nonetheless, its potential is high, but its drawbacks, i.e., accessibility, cost, and integration of VR with standard clinical practice are one of the large spheres of concern (Threapleton et al., 2016). The infrastructure to carry out VR therapy to its fullest potential has not been yet developed by rehabilitation centers, and the cost of VR equipment is a depressing element against its universal applicability (Nieto-Escamez et al., 2023).

Healthcare practitioners seek the optimal use of as they strive to


determine the optimal use of Virtual reality (VR) during the rehabilitation therapy, it is essential to comprehend the design aspects that facilitate its effectiveness and the assessment of patient engagement (Liu et al., 2024).

Factors like real-time feedback, personalized experiences, gamification components, and multi-sensory engagement are in the optimization of VR treatment. (Burdea, 2003). Moreover, research works have examined the comparative advantage of VR-based rehabilitation over traditional methods. It is found that VR may facilitate improvement, adherence to treatment measures, enhanced motivation, and higher patient satisfaction (Bhise et al., 2024; Powell, 2017). Also, VR therapy is characterized by the advantage of real-time performance measurement, so that therapists could monitor improvement and adjust treatment accordingly (Howard, 2017).

One of the major research priorities is the evaluation of the cost-effectiveness of the virtual reality rehabilitation. Although the initial investment in VR-equipment may be costly, the long-term returns -like reduced therapy length, increased recovery, and decreased hospital readmissions- make it a reasonable alternative to conventional rehabilitation methods (Porras et al., 2018). The efficacy of VR therapy also depends on the demographic factor. (Ng 2023) states that patients who are younger and digitally savvy exhibit greater potential to use VR therapies, and older patients often require additional support and training.

Additionally, the problem of uneven access to healthcare facilities in the areas, difficulties with the implementation of virtual reality (VR) and its impact on the ability to follow therapeutic recommendations require further study. Although the developed countries have made great advances in rehabilitation with the application of VR technologies, the low-resource environments still encounter cost and technological infrastructure issues (Diriba Kenea et al., 2024). It is necessary to conduct comparative studies of various healthcare systems to assess the worldwide usage of VR-based rehabilitation. As VR technology develops, its role in rehabilitation is set to change how patients are treated. It offers an immersive and interactive

experience. Research shows that virtual reality (VR) can be a useful tool in rehabilitation for improving motor skills, reduce pain, improve postural stability, and encourage neuroplastic changes in therapy patients (Yilmaz Yelvar et al., 2017; Pekyavas and Ergun, 2017). On this evidence, this review the wide-range application of VR in Rehabilitation with its benefits and limitations. This review also addresses key research questions like influence of VR for patient-centered outcomes, the availability of VR-based interventions, improvements in technology, and the practical difficulties of integrating VR into existing healthcare systems. This paper evaluates the statistical data and previous findings to provide a comprehensive understanding of how VR might influence the future of rehabilitation. It also addresses how immersive digital therapies may evolve into sustainable practice that provides consistent recovery and improve the quality of life for patient over time.

Fig. 2 VR in Rehabilitation

2. LITERATURE REVIEW

Table 1 Literature Survey of The Role of VR in Rehabilitation Therapy

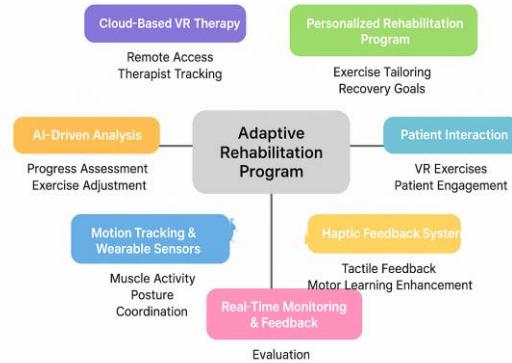
Sr No	Author(s)	Study Overview	Purpose	Method Used	Main Findings	Gaps	Key Takeaways
1.	Naqvi et al.	Explored VR usability in rehabilitation for patients and therapists.	Assessed engagement and outcomes in rehabilitation using VR.	Review of relevant literature and case studies.	Noted improvements in engagement and results with VR approaches.	Small sample sizes, lacking long-term research.	VR has merit but wider application requires further development.
2.	Bateni et al.	Investigated VR's effectiveness in therapy as both an intervention and diagnostic tool.	Evaluated VR's utility in clinical settings.	Combined data from experimental research and clinical trial.	VR contributed to faster recovery and enhanced motor functions.	High costs and limited accessibility remain concerns.	Positive potential noted, but cost-effective solutions are needed.

3.	Kim et al.	Compared VR-supported and conventional methods for ankle instability.	Investigated differences in rehabilitation outcomes.	Randomized controlled trial.	VR improved balance and stabilization outcomes.	Short follow-up and smaller study groups.	VR can serve as a viable alternative to traditional methods.
4.	Yilmaz Yelvar et al..	Studied VR-integrated walking physiotherapy for low-back pain.	Evaluated its effects on pain, movement, and fear of movement.	Randomized controlled clinical trial.	Notable pain relief and increased movement observed.	Larger sample size recommended for future work.	Findings indicate effective outcomes with VR-based physiotherapy.
5.	Pekyavas & Ergun	Compared virtual reality exergaming with standard home exercises for shoulder dysfunctions.	Measured effectiveness of VR exergaming for adherence and motivation.	Experimental study design	VR resulted in improved adherence and motivation among participants.	Shortage of long-term monitoring data.	VR exergaming appears to enhance rehabilitation adherence.
6.	Asadazadeh et al.	Synthesized research on VR-based exercise in clinical rehabilitation.	Summarize the effectiveness of VR-based exercise therapy	Summarized the restorative effects of VR.	Systematic review.	Functional recovery and motivation saw improvements with VR.	Few directly comparable studies, unstandardized protocols.
7.	Toköz et al.	Focused on VR's use for upper limb injury rehabilitation and Diseases of Upper Extremities	Assessed VR for improving upper limb function.	Combined data from clinical literature and trials.	Enhanced recovery of hand function noted with VR-based therapies.	Sample sizes were generally small.	Potential found for upper limb recovery, yet requires broader studies.
8.	Bhise et al.	Overviewed VR's role in physical rehabilitation.	Addressed applications across rehab types.	Narrative review approach.	A range of rehabilitation settings can benefit from VR.	Quantitative data on effectiveness remains limited.	VR has high potential but ongoing validation is needed.
9.	Burdea	Analyzed benefits and challenges associated with VR rehabilitation.	Highlighted advantages and issues faced in VR adoption.	Conceptual analysis and review.	VR promotes immersive, engaging rehab experiences.	Noted drawbacks were technology dependency and high implementation costs.	Despite challenges, VR technology offers valuable solutions where applied.
10.	Powell.	Examined innovations and persistent challenges in VR rehab technology adoption.	Identified emerging themes and barriers to use.	Reviewed new VR technologies in rehabilitation	VR offers new ways to approach rehabilitation but adoption is slow due to costs and integration challenges.	Technology cost and integration remain major obstacles.	VR is promising yet mainstream adoption needs refinement and systemic support.

3. DISCUSSION

The interactive of virtual reality (VR) proven as valuable tool in increasing patient motivation and interest in rehabilitation programs. While traditional rehab methods, feels dull and

repetitive, VR introduces game-like challenges to therapeutic exercises making the sessions more engaging and enjoyable. This sense of engagement not only motivates patients but also


improves consistency in following prescribed exercises, which has been linked to better recovery outcomes.

VR technologies allow to replicate real-life situations in virtual space, providing patient a safe setting to practice functional skills without causing any injury or strain. Research has shown that targeted VR exercises have enhance motor learning, simulate neuroplasticity, and improve cognitive abilities in individuals recovering from stroke, managing chronic pain, or taking part in neurorehabilitation programs. Studies by Cerdini et al. (2024) [22] and Georgiev et al. (2021) [25] shows the value of immersive VR therapies and demonstrate their advantages in treating a variety of conditions.

Other important feature of VR-based rehabilitation is it provides real-time feedback, which supports recovery process and help both therapists and patient to track progress with increased accuracy. Motion tracking, haptic feedback, and intelligent AI systems all come together to contribute this. They spot mistakes quickly and suggest corrections on the spot. Immediate feedback helps patients avoid repeating incorrect movements that could slow progress. Besides motor training, VR environments can also be used for pain management, offering significant benefits in immersive settings. Clinical trials have shown that using distraction techniques and neurofeedback, which are part of VR, can reduce pain (Yilmaz Yelvar et al., 2017 [4]; Porras et al., 2018 [19]). During the therapy sessions it is also reported that VR not only improves Physical ability but also help psychologically, making patients feel less anxious and more confident.

With these clear benefits it also has several challenges for becoming standard part of rehabilitation. Cost is a major issue as equipment for systems with advanced features like motion sensors or haptic feedback are not affordable for most clinics or individual users. On top of that, no standardized procedures are set to use VR in rehabilitation makes it difficult for clinicians to form a treatment plan for the patient. Until these issues are addressed, the potential of VR will be limited, even though having a potential for future therapy. The second challenge is insufficient technical capability in most rehabilitation facilities; this may not facilitate effective installation, use, and maintenance of the VR programs, thus dragging down their adoption. On the part of the patient, the problems of usability are also a concern: side effects like dizziness, physical pain, or the difficulty of using the VR interfaces can decrease the desire to participate, especially in the case of older adults or very impaired people.

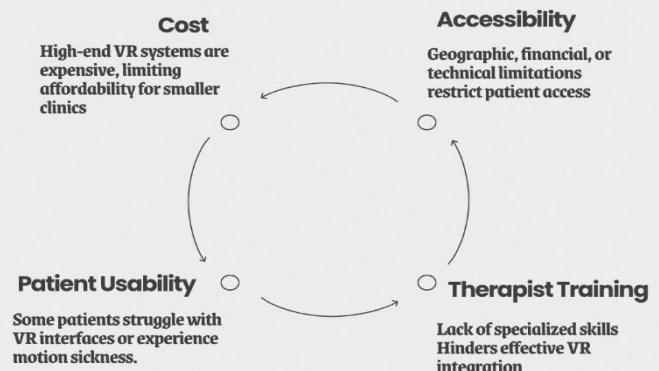

Integrated VR System for Adaptive Rehabilitation

Fig. 3 Integrated VR System

In the future, artificial intelligence (AI) and wearable sensor-based technologies can be expected to resolve most of the existing shortcomings and make VR-based rehabilitation more available and scalable to a broad variety of clinical applications. Introduction of inexpensive VR headsets, and specialized software made specifically to be used in rehabilitation might also increase access, to a wider and more varied group of patients. Moreover, the emergence of distance VR rehabilitation creates an opportunity that patients can still receive treatment at home and be supervised by a professional, thus further increasing the effect of inpatient care. Nevertheless, to make VR sustainable in the healthcare sector, such issues as data privacy, long-term clinical efficacy, and active participation of the therapist in the experience will have to be tackled. The development of VR could change rehabilitation into a more interactive, customized and more successful process with further research and technological advancement, which eventually is beneficial to patients across the globe.

How to Address Challenges for Using VR in Rehabilitation

Fig. 4 Challenges for Using VR in Rehabilitation

To establish the novelty and relevance of this review, it is important to compare its findings with well-established works in reputed publications. A study by Georgiev et al. (2021) [25], published in *Frontiers in Neuroscience* (Springer Nature), emphasized the transformative role of virtual reality (VR) in enhancing neurorehabilitation and cognitive function. Their review concluded that VR interventions promote neuroplasticity, attention restoration, and executive function recovery, which aligns with the current article's perspective on the cognitive and neurological impact of immersive VR therapies. Furthermore, Ceradini et al. (2024) [22], in the *Journal of NeuroEngineering and Rehabilitation* (Springer), conducted a scoping review specifically targeting immersive VR for upper-extremity rehabilitation in neurological patients. Their findings support the argument that multisensory feedback and interactive virtual environments significantly improve motor recovery and patient engagement, especially in clinical settings.

This directly relates to the main idea of this paper, which promotes the use of gamified, feedback-driven VR environments to improve therapy adherence and clinical results. Together, these studies show that VR as not just a helpful tool, but a significant advancement that could change the face of rehabilitation therapy.

Table 2 Comparative Study with Standard Publications

Study	Source	Focus Area	VR Outcome	Relevance to This Paper
Georgiev et al. (2021)	Frontiers in Neuroscience (Springer Nature)	Neurorehabilitation & Cognitive Enhancement	Improved cognitive recovery, attention, and neuroplasticity	Supports claims on cognitive benefits of VR
Ceradini et al. (2024)	Journal of NeuroEngineering and Rehabilitation (Springer)	Upper-extremity Neurorehabilitation	Enhanced motor function and patient engagement	Reinforcement VR's effectiveness in immersive therapy

4. CONCLUSION

Virtual reality is changing the way rehabilitation is done, turning therapy into a more engaging and personalized experience. This review has shown how VR can help patients recover physically, manage pain, improve cognitive function, and even boost confidence and reduce anxiety. Tools like motion tracking, haptic feedback, and AI-driven analysis make it possible to monitor progress in real time and adapt therapy to each patient's needs. VR doesn't just help people move better—it helps them feel better, too.

Still, there are challenges to wider use. Equipment can be expensive, access is limited, and many clinics struggle with

guidelines and setup. Overcoming these barriers will require collaboration between clinicians, engineers, and researchers, along with more studies to refine and validate VR therapies. Looking ahead, combining VR with AI and patient data could make rehabilitation even smarter and more adaptive, tailoring therapy to each individual. With these advancements, VR has the potential to become a standard, patient-centered approach in rehabilitation—making therapy more effective, motivating, and truly transformative.

REFERENCES

1. Naqvi WM, Naqvi I, Mishra GV, Vardhan V. The Dual Importance of Virtual Reality Usability in Rehabilitation: A Focus on Therapists and Patients. *Cureus*. 2024 Mar 22;16(3):e56724. doi: 10.7759/cureus.56724. PMID: 38646260; PMCID: PMC11032731.
2. Bateni H, Carruthers J, Mohan R, Pishva S. Use of Virtual Reality in Physical Therapy as an Intervention and Diagnostic Tool. *Rehabil Res Pract*. 2024 Jan 25;2024:1122286. doi: 10.1155/2024/1122286. PMID: 38304610; PMCID: PMC10834096.
3. Kim, K., Choi, B. and Lim, W., 2019. The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: a pilot randomized controlled trial. *Disability and Rehabilitation: Assistive Technology*, 14(3), pp.276-280.
4. Yilmaz Yelvar, G.D., Çirak, Y., Dalkılıç, M., Parlak Demir, Y., Guner, Z. and Boydak, A., 2017. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? Randomised controlled trial. *European spine journal*, 26, pp.538-545.
5. Pekyavas, N.O. and Ergun, N., 2017. Comparison of virtual reality exergaming and home exercise programs in patients with subacromial impingement syndrome and scapular dyskinesis: Short term effect. *Acta orthopaedica et traumatologica turcica*, 51(3), pp.238-242.
6. Afsoon Asadzadeh, Taha Samad-Soltani, Zahra Salahzadeh, Peyman Rezaei-Hachesu, Effectiveness of virtual reality-based exercise therapy in rehabilitation: A scoping review, *Informatics in Medicine Unlocked*, Volume 24, 2021, 100562, ISSN 2352-9148 <https://doi.org/10.1016/j.imu.2021.100562>
7. Naqvi WM, Naqvi I, Mishra GV, Vardhan V. The Dual Importance of Virtual Reality Usability in Rehabilitation: A Focus on Therapists and Patients. *Cureus*. 2024 Mar 22;16(3):e56724. doi: 10.7759/cureus.56724. PMID: 38646260; PMCID: PMC11032731.
8. Tokgöz P, Stampa S, Wähnert D, Vordemvenne T, Dockweiler C. Virtual Reality in the Rehabilitation of Patients with Injuries and Diseases of Upper Extremities. *Healthcare (Basel)*. 2022 Jun 16;10(6):1124. doi: 10.3390/healthcare10061124. PMID: 35742176; PMCID: PMC9222955.
9. Bhise, Swati1,2,*; Rathi, Manisha2; Dabaghv, Rachanal; Atre, Janhavi1. Use of virtual reality in physical rehabilitation: A narrative review. *Current Medicine Research and Practice* 14(3):p 122-127, May–Jun 2024. | DOI: 10.4103/cmrp.cmrp_225_23
10. Burdea, Grigore. (2003). Virtual Rehabilitation - Benefits and Challenges. *Methods of information in medicine*. 42. 519-23. 10.1267/METH03050519.
11. Bateni, Hamid, Carruthers, Jenna, Mohan, Rebecca, Pishva, Seyeda mirhossein, Use of Virtual Reality in Physical Therapy as an Intervention and Diagnostic Tool, *Rehabilitation Research and Practice*, 2024, 1122286, 9 pages, 2024. <https://doi.org/10.1155/2024/1122286>
12. Powell, W (ed.) 2017, 'Innovations and challenges in the use of virtual reality technologies for rehabilitation', *Journal of Alternative Medicine Research*.
13. Ng, Joseph. (2023). Evaluating the Integration of Virtual Reality in Physical Therapy: A Scoping Review. 10.5281/zenodo.14847361.

14. Nieto-Escamez, Francisco, Irene Cortés-Pérez, Esteban Obrero-Gaitán, and Augusto Fusco. 2023. "Virtual Reality Applications in Neurorehabilitation: Current Panorama and Challenges" *Brain Sciences* 13, no. 5: 819. <https://doi.org/10.3390/brainsci13050819>
15. Aderinto, N. *et al.* (2023) 'Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence', *Annals of Medicine*, 55(2). doi: 10.1080/07853890.2023.2285907.
16. Threapleton K, Drummond A, Standen P. Virtual rehabilitation: What are the practical barriers for home-based research? *Digit Health.* 2016 Apr 29;2:2055207616641302. doi: 10.1177/2055207616641302. PMID: 29942551; PMCID: PMC6001226.
17. Liu, Jiani, Ping Shi, and Hongliu Yu. 2024. "Design of Lumbar Rehabilitation Training System Based on Virtual Reality" *Electronics* 13, no. 10: 1850. <https://doi.org/10.3390/electronics13101850>
18. Diriba Kenea C, Gemechu Abessa T, Lamba D, Bonnechère B. Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review. *Sensors (Basel)*. 2024 May 31;24(11):3546. doi: 10.3390/s24113546. PMID: 38894337; PMCID: PMC11175221.
19. Cano Porras, D., Siemonsma, P., Inzelberg, R., Zeilig, G. and Plotnik, M., 2018. Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. *Neurology*, 90(22), pp.1017-1025.
20. Howard, M.C., 2017. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. *Computers in Human Behavior*, 70, pp.317-327.
21. Keshner EA, Weiss PT, Geifman D, Raban D. Tracking the evolution of virtual reality applications to rehabilitation as a field of study. *J Neuroeng Rehabil.* 2019;16(1):76. Published 2019 Jun 21. doi:10.1186/s12984-019-0552-6
22. Ceradini, M., Losanno, E., Micera, S. *et al.* Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review. *J NeuroEngineering Rehabil* 21, 75 (2024). <https://doi.org/10.1186/s12984-024-01367-0>
23. Cushnan, J., McCafferty, P. & Best, P. Clinicians' perspectives of immersive tools in clinical mental health settings: a systematic scoping review. *BMC Health Serv Res* 24, 1091 (2024). <https://doi.org/10.1186/s12913-024-11481-3>
24. Garcia, Laura & Birkhead, Brandon & Krishnamurthy, Partha & Mackey, Ian & Sackman, Josh & Salmasi, Vafi & Louis, Robert & Maddox, Todd & Darnall, Beth. (2021). Three-Month Follow-Up Results of a Double-Blind, Randomized Placebo-Controlled Trial of 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality (VR) for Chronic Low Back Pain. *The Journal of Pain*. 23. 10.1016/j.jpain.2021.12.002.
25. D. D. Georgiev, I. Georgieva, Z. Gong, V. Nanjappan, and G. V. Georgiev, "Virtual Reality for Neurorehabilitation and Cognitive Enhancement," *Frontiers in Neuroscience*, vol. 15, p. 622695, 2021.